View source: R/model_diaggmm.R
DiagGmm | R Documentation |
An S4 class to represent a multivariate diagonal Gaussian mixture model. The model corresponds to the following generative model:
π \sim Dirichlet(α)
Z_i \sim \mathcal{M}(1,π)
λ_k^{(d)} \sim \mathcal{G}(κ,β)
μ_k^{(d)} \sim \mathcal{N}(μ,(τ λ_k)^{-1})
X_{i.}|Z_{ik}=1 \sim \mathcal{N}(μ_k,λ_{k}^{-1})
with \mathcal{G}(κ,β) the Gamma distribution with shape parameter κ and rate parameter β.
These classes mainly store the prior parameters value (α,τ,κβ,μ) of this generative model.
The DiagGmm-class
must be used when fitting a simple Diagonal Gaussian Mixture Model whereas the DiagGmmPrior-class
must be sued when fitting a CombinedModels-class
.
DiagGmmPrior(tau = 0.01, kappa = 1, beta = NaN, mu = NaN) DiagGmm(alpha = 1, tau = 0.01, kappa = 1, beta = NaN, mu = NaN)
tau |
Prior parameter (inverse variance), (default 0.01) |
kappa |
Prior parameter (gamma shape), (default to 1) |
beta |
Prior parameter (gamma rate), (default to NaN, in this case beta will be estimated from data as 0.1 time the mean of X columns variances) |
mu |
Prior for the means (vector of size D), (default to NaN, in this case mu will be estimated from data as the mean of X) |
alpha |
Dirichlet prior parameter over the cluster proportions (default to 1) |
a DiagGmmPrior-class
object
a DiagGmm-class
object
Bertoletti, Marco & Friel, Nial & Rastelli, Riccardo. (2014). Choosing the number of clusters in a finite mixture model using an exact Integrated Completed Likelihood criterion. METRON. 73. 10.1007/s40300-015-0064-5. #'
DiagGmmFit-class
, DiagGmmPath-class
Other DlvmModels:
CombinedModels
,
DcLbm
,
DcSbm
,
DlvmPrior-class
,
Gmm
,
Lca
,
MoM
,
MoR
,
MultSbm
,
Sbm
,
greed()
DiagGmmPrior() DiagGmmPrior(tau = 0.1) DiagGmm() DiagGmm(tau = 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.