Lca | R Documentation |
An S4 class to represent a Latent Class Analysis model Such model can be used to cluster a data.frame X with several columns of factors with the following generative model :
π \sim \textrm{Dirichlet}(α),
\forall k, \forall j, \quad θ_{kj} \sim \textrm{Dirichlet}_{d_j}(β),
Z_i \sim \mathcal{M}_K(1,π),
\forall j=1, …, p, \quad X_{ij}|Z_{ik}=1 \sim \mathcal{M}_{d_j}(1, θ_{kj}),
These classes mainly store the prior parameters value (α,β) of this generative model.
The Lca-class
must be used when fitting a simple Latent Class Analysis whereas the LcaPrior-class
must be used when fitting a CombinedModels-class
.
LcaPrior(beta = 1) Lca(alpha = 1, beta = 1)
beta |
Dirichlet prior parameter for all the categorical feature (default to 1) |
alpha |
Dirichlet prior parameter over the cluster proportions (default to 1) |
a LcaPrior-class
object
a Lca-class
object
LcaFit-class
, LcaPath-class
Other DlvmModels:
CombinedModels
,
DcLbm
,
DcSbm
,
DiagGmm
,
DlvmPrior-class
,
Gmm
,
MoM
,
MoR
,
MultSbm
,
Sbm
,
greed()
LcaPrior() LcaPrior(beta = 0.5) Lca() Lca(beta = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.