RelULSIF: Relative unconstrained least squares importance fitting

Description Usage Arguments Value Examples

View source: R/RelULSIF.R

Description

Estimate the ratio of probability densities that generated data in two samples (Xnu and Xde).

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
RelULSIF(
  Xnu,
  Xde,
  Xce = NULL,
  sigma = NULL,
  lambda = NULL,
  alpha = 0.01,
  k = 100,
  n_folds = 5
)

Arguments

Xnu

Samples from numerator probability density

Xde

Samples from denomenator probability density

Xce

Matrix of centers

sigma

Scalar or vector; Gaussian kernel bandwidth(s). Positive.

lambda

Scalar or vector; regularization parameter(s). Non-negative.

alpha

Scalar; relative parameter in [0, 1)

k

Positive integer; number of basis functions

n_folds

Integer; number of folds to use in cross fold validation

Value

List of 3

Examples

1
2
3
4
5
6
7
8
9
X <- matrix(
    c(rnorm(50), rnorm(50, mean = 5), rnorm(50, mean = -5),
    rnorm(100), rnorm(25, mean = 3), rnorm(25, mean = -1),
    rnorm(25), rnorm(75, mean = -2), rnorm(50, mean = 4)),
    nrow = 3, ncol = 150, byrow = TRUE
)
Xnu <- X[ , 1:50]
Xde <- X[ , 51:ncol(X)]
RelULSIF(Xnu, Xde)

connorbrubaker/rulsif.ts documentation built on Dec. 19, 2021, 6:02 p.m.