get_corr_heatbox | R Documentation |
For all (or selected) samples this function generate a correlation heat box type plot.
get_corr_heatbox(
x,
samples = NULL,
genes = NULL,
corr_method = "pearson",
plot_type = "full",
vis_method = "square",
show_diagonal = TRUE,
show_corr_values = FALSE,
col_corr_values = "yellow",
size_corr_values = 5,
cluster_samples = FALSE,
scale_range = NULL
)
x |
an object of class parcutils. |
samples |
a character vector denoting samples to plot in scatter plot, default |
genes |
a character vector denoting genes to consider in scatter plot, default |
corr_method |
a character string, default |
plot_type |
a character string, default |
vis_method |
a character string, default |
show_diagonal |
a logical, default |
show_corr_values |
a logical, default |
col_corr_values |
a character string, default |
size_corr_values |
a numeric, default |
cluster_samples |
a logical, default |
scale_range |
a numeric vector of length two denoting minimum and maximum value for the color scale, default |
a corr plot.
count_file <- system.file("extdata","toy_counts.txt" , package = "parcutils")
count_data <- readr::read_delim(count_file, delim = "\t")
sample_info <- count_data %>% colnames() %>% .[-1] %>%
tibble::tibble(samples = . , groups = rep(c("control" ,"treatment1" , "treatment2"), each = 3) )
res <- run_deseq_analysis(counts = count_data ,
sample_info = sample_info,
column_geneid = "gene_id" ,
group_numerator = c("treatment1", "treatment2") ,
group_denominator = c("control"))
get_corr_heatbox(res,samples = c("treatment1","control"),cluster_samples = FALSE,show_corr_values =TRUE,
size_corr_values = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.