getIterationData = function(path) {
results = NULL
# resultDfAggFilter = NULL
# define relevant cols of csv
cols = c("fw.abs", "mmce.test.mean", "method", "classifier", "dataset", "iter", "exec.time", "dob")
# get datasets
datasets = list.dirs(path = path, full.names = F, recursive = F)
for(dataset in datasets) {
dataset_path = paste(path, dataset, sep = "/")
# get classifier
classifiers = list.dirs(path = dataset_path, full.names = F, recursive = F)
for (classifier in classifiers) {
# get iterations
iterations = list.dirs(path = paste(dataset_path, classifier, sep = "/"), full.names = F, recursive = F)
# print(iterations)
for (iteration in iterations) {
# build current path
iteration_path = paste(dataset_path, classifier, iteration, sep = "/")
aggr_file_path = list.files(iteration_path)
hyper_file = aggr_file_path[startsWith(aggr_file_path, "Hyper")]
# check if done.txt exists
if (length(hyper_file) > 0) {
# load result of iteration
result_temp = readr::read_delim(
paste(iteration_path, hyper_file, sep = "/"),
";"
)
# set classifier
result_temp$classifier = classifier
result_temp$dataset = dataset
# append to results filter
if("fw.abs" %in% colnames(result_temp)) {
if (is.null(results)) {
# browser()
results = result_temp[,cols]
}
else {
# browser()
results = rbind(results, result_temp[,cols])
}
}
}
}
}
}
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.