#' Input files for multiple BT runs
#'
#' This function creates imput files for a large combination of the parameters
#' under the BayesTraits MultiState model.
#'
#' Specifically, this function is designed to run models differing in the following
#' parameters: (1) "PriorAll" vs. "RevJump", (2) Variable rates vs. non-Variable rates,
#' and (3) uniform vs. exponential distributions.
#'
#' @param tree A fully-bifurcating Phy object
#' @param dataset A data.frame object with two columns (tip name + state)
#' @param run \code{logic} whether analyses should start after input files are created
#' @param name_general A \code{character} indicating the name of the analuysis (use unique per analysis)
#' @param ML \code{logic} whether parameters should be optimized under a Maximum Likelihood approach. MCMC analyses are available under \code{ML=F}
#' @param it The number of iterations under a bayesian optimization (only when \code{ML=F})
#' @param bur Total number of generations assumed as burnin under a bayesian optimization (only when \code{ML=F})
#' @export
BT_multiple <-
function(tree,
dataset,
run = F,
name_general,
ML = F,
it = 11000000,
bur = 1000000) {
priors <- c("PriorAll", "RevJump")
rates <- c(T, F)
distrib <- c("uniform", "exp")
for (i in 1:2) {
for (j in 1:2) {
for (k in 1:2) {
BT_single(
tree = tree,
dataset = dataset ,
model = priors[i],
vrates = rates[j],
dist = distrib[k],
val_prior = if (distrib[k] == "exp") {
10
} else{
c(0, 10)
},
ML = F,
run = run,
name = paste0(
name_general,
priors[i],
"_Vrates=",
rates[j],
"_",
distrib[k]
)
)
BT_progress(i / 2, j / 2, k / 3)
}
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.