API for currocam/toolkit4pySCA
A set of useful functions for performing an Statistical Coupling Analysis from scratch in R and using pySCA

Global functions
%>% Man page
SCA_correlation_matrix_data Man page Source code
SCA_positional_coevolution_matrix_components_data Man page Source code
SCA_positional_coevolution_matrix_eigenvalues_data Man page Source code
download_tax_from_ncbi Man page Source code
eigenspectrum_SCA_positional_coevolution_matrix_plot Man page Source code
extract_tidy_df_from_hmmer Man page Source code
extract_tidy_domains_from_xml Man page Source code
extract_tidy_hits_from_xml Man page Source code
extract_tidy_stats_from_xml Man page Source code
global_similarity_matrix_data Man page Source code
global_similarity_matrix_heatmap Man page Source code
import_pySCA_module_using_reticulate Man page Source code
pairwise_sequence_identities_data Man page Source code
pairwise_sequence_identities_hist Man page Source code
phmmer_HBG2_HUMAN Man page
position_specific_conservation_data Man page Source code
position_specific_conservation_plot Man page Source code
post_request_to_phmer Man page Source code
pySCA_HBG2_HUMAN Man page
quick_AA_search_using_phmmer Man page Source code
read_pySCA_pickle Man page Source code
sequence_correlation_matrix_projections_data Man page Source code
sequence_correlation_matrix_projections_plot Man page Source code
write_sectors_for_pymol Man page Source code
currocam/toolkit4pySCA documentation built on April 7, 2022, 8:17 p.m.