# DGB
## Standardized Mean Difference from Two (Independent) Samples
ci.stdmean.is <- function(alpha, m1, m2, sd1, sd2, n1, n2) {
# Computes confidence interval for a population standardized mean
# difference in a 2-group design
# Arguments:
# alpha: alpha level for 1-alpha confidence
# mj: sample mean in group j
# sdj: sample standard deviation in group j
# nj: sample size in group j
# Values:
# estimate, SE, lower limit, and upper limit for equal variance and
# unequal variance methods plus single group standardizer
z <- qnorm(1 - alpha/2)
v1 <- sd1^2
v2 <- sd2^2
s <- sqrt((v1 + v2)/2)
sp <- sqrt(((n1 - 1)*v1 + (n2 - 1)*v2)/(n1 + n2 - 2))
est1 <- (m1 - m2)/s
se1 <- sqrt(est1^2*(v1^2/(n1-1) + v2^2/(n2-1))/(8*s^4) + (v1/(n1-1) + v2/(n2-1))/s^2)
ll1 <- est1 - z*se1
ul1 <- est1 + z*se1
est2 <- (m1 - m2)/sp
se2 <- sqrt(est2^2*(1/(n1 - 1) + 1/(n2 - 1))/8 + 1/n1 + 1/n2)
ll2 <- est2 - z*se2
ul2 <- est2 + z*se2
est3 <- (m1 - m2)/sd1
se3 <- sqrt(est3^2/(2*(n1 - 1)) + 1/(n1 - 1) + v2/((n2 - 1)*v1))
ll3 <- est3 - z*se3
ul3 <- est3 + z*se3
est4 <- (m1 - m2)/sd2
se4 <- sqrt(est4^2/(2*(n2 - 1)) + 1/(n2 - 1) + v1/((n1 - 1)*v2))
ll4 <- est4 - z*se4
ul4 <- est4 + z*se4
out1 <- t(c(est1, se1, ll1, ul1))
out2 <- t(c(est2, se2, ll2, ul2))
out3 <- t(c(est3, se3, ll3, ul3))
out4 <- t(c(est4, se4, ll4, ul4))
out <- rbind(out1, out2, out3, out4)
colnames(out) <- c("Estimate", "SE", "LL", "UL")
rownames1 <- c("Equal Variances Not Assumed", "Equal Variances Assumed:")
rownames2 <- c("Group 1 Standardizer:", "Group 2 Standardizer:")
rownames(out) <- c(rownames1, rownames2)
return(out)
}
size.ci.stdmean.is <- function(alpha, d, w, r) {
# Computes sample size required to estimate a population standardized
# mean difference with desired precision in a 2-group design
# Arguments:
# alpha: alpha level for 1-alpha confidence
# d: planning value of standardized mean difference
# w: desired confidence interval width
# r: desired n2/n1 ratio
# Values:
# required sample size per group (or n1 if r not equal to 1)
z <- qnorm(1 - alpha/2)
n <- ceiling((d^2*(1 + r)/(2*r) + 4*(1 + r)/r)*(z/w)^2)
return(n)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.