Description Usage Arguments Value Examples
fit a linear model with basic model diagnose
1 2 3 4 5 6 7 8 9 10 11 12 |
dat |
input data frame with no NAs, should include all the data that will be used |
response |
name string for response |
covariates |
string vector of the chosen variables in the input data frame |
inter |
specify the pairwise interaction in regression , e.g.:c('Age*Sex', 'Age*R_E') |
category |
specify the categorical variables by input the names vector |
cat_method |
choose the coding method for categorical variables, should be 'reference' or 'cellmeans' |
ref |
specify the reference level for each categorical variable |
model.diag |
default is True, activate the model diagnose function |
intercept |
default is True, make the model with an intercept |
cutoff |
specify the level of significance for the test |
similar output table as summary(lm), residuals,R.square, R.square.adj, SSE
1 2 3 4 5 6 | data(mydata)
covar2 = c('Fatalism', 'Sex', 'R_E', 'Age_4Cat', 'NIHSS_4Cat')
covar3 = c('Fatalism', 'Sex', 'R_E', 'Age_4Cat')
t4 = mylm(mydata, 'Depression', covar2, category = c('Age_4Cat', 'NIHSS_4Cat'), ref = c(1,1))
t5 = mylm(mydata, 'Depression', covar3, category = c('Age_4Cat'),
cat_method = 'cellmeans', intercept = FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.