load("C:/Users/Craig/Dropbox/R Library/rSSOAP/DATA/tidy_rain.RData")
load("C:/Users/Craig/Dropbox/R Library/WWSP/data/hrt.rda")
library(tidyverse); theme_set(theme_bw())
library(lubridate)
library(stringr)
library(rSSOAP)
library(zoo)
library(vars)
# remove gwi from decomp
ps <- hrt %>%
filter(grid=="west") %>%
filter(str_detect(tolower(address), "duch*")) %>%
mutate(date=date(datetime)) %>%
filter(date>=mdy("01/01/2019")) %>%
mutate(flow=runtime*500)
df <- ps %>%
group_by(date) %>%
summarize(df=sum(flow))
hourly_rain <- tidy_rain %>%
filter(station=="SOWEST")
rain <- hourly_rain %>%
mutate(date=date(datetime)) %>%
group_by(date) %>%
summarize(rain=sum(rainfall_in))
dry_event <- df %>%
left_join(rain, by=c("date")) %>%
mutate(lag_short=rollapply(rain, 7, sum, fill=0)) %>%
mutate(lag_long=rollapply(rain, 14, sum, fill=0)) %>%
filter(rain<= 0.25 & lag_short<=0.5 & lag_long <= 2)
dwf <- ps %>%
inner_join(dry_event, by=c("date")) %>%
mutate(wday=wday(datetime)) %>%
mutate(hour=hour(datetime)) %>%
mutate(wdayhour=wday+hour/24) %>%
group_by(wdayhour) %>%
summarize(dwf=mean(flow))
wwf <- ps %>%
mutate(wday=wday(datetime)) %>%
mutate(hour=hour(datetime)) %>%
mutate(wdayhour=wday+hour/24) %>%
left_join(dwf, by=c("wdayhour")) %>%
mutate(wwf=flow-dwf) %>%
left_join(hourly_rain, by=c("datetime"))
gwi <- wwf %>%
group_by(date) %>%
summarize(df_wwf=mean(wwf)) %>%
mutate(rp=zoo::rollapply(df_wwf, 30, quantile, prob=0.05, fill=0))
adj <- ps %>%
left_join(gwi, by=c("date")) %>%
mutate(adj=flow-rp)
wwf <- adj %>%
mutate(wday=wday(datetime)) %>%
mutate(hour=hour(datetime)) %>%
mutate(wdayhour=wday+hour/24) %>%
left_join(dwf, by=c("wdayhour")) %>%
mutate(wwf=flow-dwf) %>%
left_join(hourly_rain, by=c("datetime"))
use <- wwf %>%
ungroup() %>%
mutate(wwf_gpm=wwf/60) %>%
dplyr::select(wwf=wwf_gpm, rainfall_in)
use[is.na(use$rainfall_in), ]=0
v <- VAR(use, 2, type="none")
i <- irf(v, impulse="rainfall_in", response="wwf", n.ahead=24*2, ortho=FALSE)
plot(i$Upper$rainfall_in, type="l")
wwf %>%
ggplot(aes(datetime, wwf/60)) +
geom_line() +
geom_step(aes(y=rainfall_in*100), col="blue", lwd=1)
wwf %>%
mutate(flo=dwf+rp) %>%
ggplot(aes(x=datetime, y=flo)) +
geom_line()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.