test_that("clt_demo handles errors correctly", {
expect_error(clt_demo(n = c(10, 20)))
expect_error(clt_demo(n = 1))
expect_error(clt_demo(n = "Failing test"))
expect_error(clt_demo(N = 0))
expect_error(clt_demo(N = 99))
expect_error(clt_demo(N = c(100, 200)))
expect_error(clt_demo(N = "Failing test"))
expect_error(clt_demo(distribution="Read the docs so this doesn't fail"))
expect_error(clt_demo(a=c(1, 3)))
expect_error(clt_demo(b=c(5, 20)))
expect_error(clt_demo(distribution="binormal", s=NULL))
expect_error(clt_demo(distribution="binormal", s=-1))
})
test_that("clt demo produces graph", {
# Binormal distribution
clt <- clt_demo(a=30, b=50, s=10)
expect_equal(is.numeric(clt$data), TRUE)
expect_equal(is.vector(clt$data), TRUE)
expect_equal(class(clt$plot)[2], "ggplot")
expect_equal(clt$popmean, 40)
expect_equal(clt$popvariance, 100)
# Uniform distribution
clt_uniform <- clt_demo(distribution="uniform", a=0, b=1)
expect_equal(is.numeric(clt_uniform$data), TRUE)
expect_equal(is.vector(clt_uniform$data), TRUE)
expect_equal(class(clt_uniform$plot)[2], "ggplot")
expect_equal(clt_uniform$popmean, 0.5)
expect_equal(clt_uniform$popvariance, 1/12)
# Gamma distribution
clt_gamma <- clt_demo(distribution="gamma", a=5, b=10)
expect_equal(is.numeric(clt_gamma$data), TRUE)
expect_equal(is.vector(clt_gamma$data), TRUE)
expect_equal(class(clt_gamma$plot)[2], "ggplot")
expect_equal(clt_gamma$popmean, 5 * 10)
expect_equal(clt_gamma$popvariance, 5 * 100)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.