library(covid19)
library(dplyr)
library(ggplot2)
a = plot_day_zero(countries = c('Italy', 'Spain'),
day0 = 150,
cumulative = TRUE,
time_before = 0,
max_date = as.Date('2020-03-09'))
a
ggsave('~/Desktop/isglobal/a.png')
b = plot_day_zero(countries = c('Italy', 'Spain'),
day0 = 150,
cumulative = TRUE,
time_before = -10,
max_date = as.Date('2020-03-09'),
add_markers = T)
b
ggsave('~/Desktop/isglobal/b.png')
cc = plot_day_zero(countries = c('Italy', 'Spain'),
day0 = 150,
cumulative = TRUE,
time_before = -10,
add_markers = T)
cc
ggsave('~/Desktop/isglobal/c.png')
d = plot_day_zero(countries = c('Italy', 'Spain', 'France', 'Germany', 'Switzerland', 'Norway',
'US', 'UK'),
day0 = 150,
cumulative = TRUE,
time_before = -10,
add_markers = T)
d
ggsave('~/Desktop/isglobal/d.png')
e = plot_day_zero(countries = c('Italy', 'Spain', 'France', 'Germany',
'US', 'UK', 'Switzerland'),
day0 = 150,
cumulative = TRUE,
time_before = -10,
add_markers = T)
e
ggsave('~/Desktop/isglobal/e.png')
day0 = 150
time_before = -5
pd <- df %>%
filter(country %in% c('China',
'Italy',
'Spain',
'Germany',
'France',
'US',
'UK',
'Switzerland')) %>%
filter(!district %in% 'Hubei') %>%
mutate(district = ifelse(country == 'China', district, country)) %>%
group_by(date, district, country) %>%
summarise(confirmed_cases = sum(confirmed_cases)) %>%
mutate(day = date) %>%
mutate(country = ifelse(country == 'China', 'Provinces of China', country)) %>%
ungroup %>%
group_by(district) %>%
mutate(first_case = min(date[confirmed_cases >= day0])) %>%
ungroup %>%
mutate(days_since_first_case = date - first_case) %>%
filter(days_since_first_case >= time_before)
library(RColorBrewer)
cols <- colorRampPalette(brewer.pal(n = 8, 'Set1'))(length(unique(pd$country)))
cols[4] <- adjustcolor('grey', alpha.f = 0.6)
f = ggplot() +
theme_simple() +
geom_line(data = pd,
aes(x = days_since_first_case,
y = confirmed_cases,
color = country,
group = district),
lwd = 1) +
scale_y_log10() +
scale_color_manual(name = '',
values = cols) +
labs(x = 'Days since first case in country/province',
y = 'Cumulative cases (log scale)',
title = 'COVID-19: Western countries vs. (non-Hubei) Chinese provinces',
subtitle = '"DAY 0": First day with > 150 cases. Grey lines: Chinese provinces',
caption = 'Data from: https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data\nChart by Joe Brew, @joethebrew, www.databrew.cc') +
xlim(-5, 20) +
geom_hline(yintercept = day0, lty = 2, alpha = 0.7) +
geom_vline(xintercept = 0, lty = 2, alpha = 0.7) +
geom_point(data = tibble(days_since_first_case = 0,
confirmed_cases = day0),
aes(x = days_since_first_case,
y = confirmed_cases),
color = 'red',
pch = 1,
size = 20)
f
ggsave('~/Desktop/isglobal/f.png')
g = plot_day_zero(countries = c('Italy', 'Spain', 'France', 'Germany',
'US', 'UK', 'Switzerland', 'Qatar',
'Japan', 'Korea, South', 'Singapore'),
day0 = 150,
cumulative = TRUE,
time_before = -10,
add_markers = T)
g
ggsave('~/Desktop/isglobal/g.png')
pdf('~/Desktop/isglobal/all.pdf',
height = 33,
width = 24)
Rmisc::multiplot(a, b, cc, d, e, f, g,
cols = 2)
dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.