#'
#' @title Applies predict.glm() to a serverside glm object
#' @description Applies native R's predict.glm() function to a serverside
#' glm object previously created using ds.glmSLMA.
#' @details Clientside function calling a single assign function (glmPredictDS.as)
#' and a single aggregate function (glmPredictDS.ag). ds.glmPredict applies
#' the native R predict.glm function to a
#' glm object that has already been created on the serverside by fitting ds.glmSLMA.
#' This is precisely the same as the glm object created in native R by fitting a glm
#' using the glm function. Crucially, if ds.glmSLMA was originally applied to
#' multiple studies the glm object created on each study is based solely
#' on data from that study. ds.glmPredict has two distinct actions. First, the
#' call to the assign function applies the standard predict.glm function of
#' native R to the glm object on the serverside and writes all the output
#' that would normally be generated by predict.glm to a newobj on the serverside.
#' Because no critical information is passed to the clientside, there are no
#' disclosure issues associated with this action. Any standard DataSHIELD functions
#' can then be applied to the newobj to interpret the output. For example, it could
#' be used as the basis for regression diagnostic plots. Second, the call
#' to the aggregate function creates a non-disclosive summary of all the
#' information held in the newobj created by the assign function
#' and returns this summary to the clientside. For example, the full list of
#' predicted/fitted values generated by the model could be disclosive.
#' So although the newobj holds the full vector of fitted values, only the
#' total number of values, the total number of valid (non-missing) values,
#' the number of missing values, the mean and standard deviation of all valid
#' values and the 5%, 10%, 25%, 50%, 75%, 90%, and 95% quantiles of these values
#' are returned to the clientside by the aggregate function. The non-DataSHIELD
#' arguments of ds.glmPredict are precisely the equivalent to those of predict.glm
#' in native R and so all detailed information can be found using help(predict.glm)
#' in native R.
#' @param glmname is a character string identifying the glm object on serverside to
#' which predict.glm is to be applied. Equivalent to <object> argument in native R's
#' predict.glm which is described as: a fitted object of class inheriting from 'glm'.
#' @param newdataname is a character string identifying an (optional) dataframe on
#' the serverside in which to look for new covariate values with which to predict.
#' If omitted,
#' the original fitted linear predictors from the original glm fit are used as the
#' basis of prediction. Precisely equivalent to the <newdata> argument in the
#' predict.glm function in native R.
#' @param output.type a character string taking the values 'response', 'link'
#' or 'terms'. The value 'response' generates predictions on the scale of the
#' original outcome, e.g. as proportions in a logistic regression. These
#' are often called 'fitted values'. The value
#' 'link' generates predictions on the scale of the linear predictor, e.g.
#' log-odds in logistic regression, log-rate or log-count in Poisson regression.
#' The predictions using 'response' and 'link' are identical for a standard
#' Gaussian model with an identity link. The value 'terms' returns either
#' fitted values or predicted values on the link scale based not on
#' the whole linear predictor but on separate 'terms'. So, if age
#' is modelled as a five level factor, one of the output components
#' will relate to predictions (fitted values or link scale predictions) based on
#' all five levels of age simultaneously. Any simple covariate (e.g. not a composite
#' factor) will be treated as a term in its own right. ds.glmPredict's <output.type>
#' argument is precisely equivalent to the <type> argument in
#' native R's predict.glm function.
#' @param se.fit logical if standard errors for the fitted predictions are required.
#' Defaults to FALSE when the output contains only a vector (or vectors) of predicted
#' values. If TRUE, the output also contains corresponding vectors for the standard
#' errors of the predicted values, and a single value reporting the scale parameter
#' of the model. ds.glmPredict's <se.fit> argument is precisely equivalent to
#' the corresponding argument in predict.glm in native R.
#' argument is equivalent to the <type> argument in native R's predict.glm function.
#' @param dispersion numeric value specifying the dispersion of the GLM fit to be assumed
#' in computing the standard errors. If omitted, that returned by
#' summary applied to the glm object is used. e.g. if <dispersion> is unspecified
#' the dispersion assumed for a logistic regression or Poisson model is 1. But if
#' dispersion is set to 4, the standard errors of the predictions will all be
#' multiplied by 2 (i.e. sqrt(4)). This is useful in making predictions from
#' models subject to overdispersion. ds.glmPredict's <dispersion> argument
#' is precisely equivalent to the corresponding argument in predict.glm in native R.
#' @param terms a character vector specifying a subset of terms to return in the
#' prediction. Only applies if output.type='terms'. ds.glmPredict's <terms>
#' argument is precisely equivalent to the corresponding argument in predict.glm
#' in native R.
#' @param na.action character string determining what should be done with missing
#' values in the data.frame identified by <newdataname>. Default is na.pass which
#' predicts from the specified new data.frame with all NAs left in place. na.omit
#' removes all rows containing NAs. na.fail stops the function if there are any
#' NAs anywhere in the data.frame. For further details see help in native R.
#' @param newobj a character string specifying the name of the serverside object
#' to which the output object from the call to ds.glmPredict is to be written
#' in each study. If no <newobj> argument is specified, the output
#' object on the serverside defaults to the name "predict_glm".
#' @param datasources specifies the particular 'connection object(s)' to use.
#' e.g. if you have several data sets in the sources you are working with
#' called opals.a, opals.w2, and connection.xyz, you can choose which of
#' these to work with. The call 'datashield.connections_find()' lists all of
#' the different datasets available and if one of these is called 'default.connections'
#' that will be the dataset used by default if no other dataset is specified. If you
#' wish to change the connections you wish to use by default the call
#' datashield.connections_default('opals.a') will set 'default.connections'
#' to be 'opals.a' and so in the absence of specific instructions to the contrary
#' (e.g. by specifiying a particular dataset to be used via the <datasources>
#' argument) all subsequent function calls will be to the datasets held in opals.a.
#' If the <datasources> argument is specified, it should be set without
#' inverted commas: e.g. datasources=opals.a or datasources=default.connections.
#' The <datasources> argument also allows you to apply a function solely to a subset
#' of the studies/sources you are working with. For example, the second source
#' in a set of three, can be specified using a call such as datasources=connection.xyz[2].
#' On the other hand, if you wish to specify solely the first and third sources, the
#' appropriate call will be datasources=connections.xyz[c(1,3)]
#' @return ds.glmPredict calls the serverside assign function glmPredictDS.as
#' which writes a new object to the serverside containing output precisely equivalent to
#' predict.glm in native R. The name for this serverside object is given by
#' the newobj argument or if that argument is missing or null it is called "predict_glm".
#' In addition, ds.glmPredict calls the serverside aggregate function glmPredictDS.ag
#' which returns an object containing non-disclosive summary statistics relating
#' either to a single prediction vector called fit or, if se.fit=TRUE, of two vectors
#' 'fit' and 'se.fit' - the latter containing the standard errors of the predictions
#' in 'fit'. The non-disclosive summary statistics for the vector(s) include:
#' length, the total number of valid (non-missing) values,
#' the number of missing values, the mean and standard deviation of the valid
#' values and the 5%, 10%, 25%, 50%, 75%, 90%, and 95% quantiles of these values. In addition,
#' the output always includes: the name of the serverside glm object being predicted from,
#' the name - if one was specified - of the dataframe being used as the basis for predictions,
#' the output.type specified ('link', 'response' or 'terms'), the value of the
#' dispersion parameter if one had been specified and the residual scale parameter (which is
#' multipled by sqrt(dispersion parameter) if one has been set). If output.type = 'terms',
#' the summary statistics for the fit and se.fit vectors are replaced by equivalent
#' summary statistics for each column in fit and se.fit matrices which each have k columns
#' if k terms are being summarised.
#' @author Paul Burton, for DataSHIELD Development Team 13/08/20
#' @export
#'
ds.glmPredict <- function(glmname = NULL, newdataname = NULL, output.type = "response",
se.fit = FALSE, dispersion = NULL, terms = NULL,
na.action = "na.pass", newobj = NULL, datasources = NULL){
# look for DS connections
if(is.null(datasources)){
datasources <- datashield.connections_find()
}
# ensure datasources is a list of DSConnection-class
if(!(is.list(datasources) && all(unlist(lapply(datasources, function(d) {methods::is(d,"DSConnection")}))))){
stop("The 'datasources' were expected to be a list of DSConnection-class objects", call.=FALSE)
}
# check that <glmname> is set
if(is.null(glmname)){
stop("<glmname> is not set, please specify it as a character string containing the name of a valid glm class object on the serverside", call.=FALSE)
}
# check if the glm object is defined in all the studies
isDefined(datasources, glmname)
# check that <output.type> is correctly set
if((output.type!="link") && (output.type!="response") && (output.type!="terms")){
stop("<output.type> is not correctly set, please specify it as one of three character strings: 'link', 'response', or 'terms'", call.=FALSE)
}
# check that <na.action> is correctly set
if((na.action!="na.fail")&&(na.action!="na.omit")&&(na.action!="na.exclude")&&(na.action!="na.pass")){
stop("<na.action> is not correctly set, please specify it as one of four character strings: 'na.fail', 'na.omit', 'na.exclude' or 'na.pass'", call.=FALSE)
}
# provide value for newobj if none specified
if(is.null(newobj)){
newobj<-"predict_glm"
}
calltext <- call("glmPredictDS.as", glmname, newdataname, output.type, se.fit, dispersion, terms, na.action)
DSI::datashield.assign(datasources, newobj, calltext)
#############################################################################################################
#DataSHIELD CLIENTSIDE MODULE: CHECK KEY DATA OBJECTS SUCCESSFULLY CREATED #
#
#SET APPROPRIATE PARAMETERS FOR THIS PARTICULAR FUNCTION #
test.obj.name<-newobj #
#
#TRACER #
#return(test.obj.name) #
#} #
#
#
# CALL SEVERSIDE FUNCTION #
calltext <- call("testObjExistsDS", test.obj.name) #
#
object.info<-DSI::datashield.aggregate(datasources, calltext) #
#
# CHECK IN EACH SOURCE WHETHER OBJECT NAME EXISTS #
# AND WHETHER OBJECT PHYSICALLY EXISTS WITH A NON-NULL CLASS #
num.datasources<-length(object.info) #
#
#
obj.name.exists.in.all.sources<-TRUE #
obj.non.null.in.all.sources<-TRUE #
#
for(j in 1:num.datasources){ #
if(!object.info[[j]]$test.obj.exists){ #
obj.name.exists.in.all.sources<-FALSE #
} #
if(object.info[[j]]$test.obj.class=="ABSENT"){ #
obj.non.null.in.all.sources<-FALSE #
} #
} #
#
if(obj.name.exists.in.all.sources && obj.non.null.in.all.sources){ #
#
return.message<- #
paste0("A data object <", test.obj.name, "> has been created in all specified data sources") #
#
#
}else{ #
#
return.message.1<- #
paste0("Error: A valid data object <", test.obj.name, "> does NOT exist in ALL specified data sources") #
#
return.message.2<- #
paste0("It is either ABSENT and/or has no valid content/class,see return.info above") #
#
return.message.3<- #
paste0("Please use ds.ls() to identify where missing") #
#
#
return.message<-list(return.message.1,return.message.2,return.message.3) #
#
} #
#
calltext <- call("messageDS", test.obj.name) #
studyside.message<-DSI::datashield.aggregate(datasources, calltext) #
#
no.errors<-TRUE #
for(nd in 1:num.datasources){ #
if(studyside.message[[nd]]!="ALL OK: there are no studysideMessage(s) on this datasource"){ #
no.errors<-FALSE #
} #
} #
#
#
if(no.errors){ #
validity.check<-paste0("<",test.obj.name, "> appears valid in all sources") #
# print(list(is.object.created=return.message,validity.check=validity.check)) #
} #
#
if(!no.errors){ #
validity.check<-paste0("<",test.obj.name,"> invalid in at least one source. See studyside.messages:") #
# print(list(is.object.created=return.message,validity.check=validity.check, #
# studyside.messages=studyside.message)) #
} #
#
#END OF CHECK OBJECT CREATED CORECTLY MODULE #
#############################################################################################################
calltext<-call("glmPredictDS.ag", glmname, newdataname, output.type,
se.fit, dispersion, terms, na.action)
output<-DSI::datashield.aggregate(datasources, calltext)
return(output)
}
#ds.glmPredict
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.