#-------------------------------------------------------------------------------
# Copyright (c) 2019-2022 University of Newcastle upon Tyne. All rights reserved.
#
# This program and the accompanying materials
# are made available under the terms of the GNU Public License v3.0.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#-------------------------------------------------------------------------------
#
# Set up
#
context("ds.mice::smk::setup")
connect.studies.dataset.cnsim(list("LAB_TSC","LAB_TRIG","LAB_HDL","LAB_GLUC_ADJUSTED",
"PM_BMI_CONTINUOUS","DIS_CVA","MEDI_LPD","DIS_DIAB",
"DIS_AMI","GENDER","PM_BMI_CATEGORICAL"))
test_that("setup", {
ds_expect_variables(c("D"))
})
#
# Tests
#
context("ds.mice::smk::imp1")
test_that("mice, initial imputation", {
initialImp <- ds.mice(data="D", m=1, method=NULL, predictorMatrix=NULL, post=NULL, seed="NA",
newobj_df='impSet')
expect_length(initialImp, 3)
expect_length(initialImp$sim1, 3)
expect_length(initialImp$sim2, 3)
expect_length(initialImp$sim3, 3)
expect_true("character" %in% class(initialImp$sim1$method))
expect_equal(as.character(initialImp$sim1$method), c("pmm","pmm","pmm","pmm","pmm","","","","","","polyreg"))
expect_true("matrix" %in% class(initialImp$sim1$predictorMatrix))
expect_true("array" %in% class(initialImp$sim1$predictorMatrix))
expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,1]), c(0,1,1,1,1,1,1,1,1,1,1))
expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,2]), c(1,0,1,1,1,1,1,1,1,1,1))
expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,3]), c(1,1,0,1,1,1,1,1,1,1,1))
expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,4]), c(1,1,1,0,1,1,1,1,1,1,1))
expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,5]), c(1,1,1,1,0,1,1,1,1,1,1))
expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,6]), c(0,0,0,0,0,0,0,0,0,0,0))
expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,7]), c(1,1,1,1,1,1,0,1,1,1,1))
expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,8]), c(1,1,1,1,1,1,1,0,1,1,1))
expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,9]), c(1,1,1,1,1,1,1,1,0,1,1))
expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,10]), c(1,1,1,1,1,1,1,1,1,0,1))
expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,11]), c(1,1,1,1,1,1,1,1,1,1,0))
expect_true("character" %in% class(initialImp$sim1$post))
expect_equal(as.character(initialImp$sim1$post), c("","","","","","","","","","",""))
numNA_bmi <- ds.numNA('impSet.1$PM_BMI_CONTINUOUS')
expect_equal(numNA_bmi$sim1, 0)
expect_equal(numNA_bmi$sim2, 0)
expect_equal(numNA_bmi$sim3, 0)
})
context("ds.mice::smk::imp2")
test_that("mice, second imputation", {
initialImp <- ds.mice(data="D", m=1, method=NULL, predictorMatrix=NULL, post=NULL, seed="NA",
newobj_df='impSet')
method <- initialImp$sim1$method
method["LAB_TRIG"] <- "norm"
predictorMatrix <- initialImp$sim1$predictorMatrix
predictorMatrix[,"LAB_GLUC_ADJUSTED"] <- 0
post <- initialImp$sim1$post
post["PM_BMI_CONTINUOUS"] <- "imp[[j]][, i] <- squeeze(imp[[j]][, i], c(15,35))"
newImp <- ds.mice(data='D', m=5, maxit=10, method=method, post=post,
predictorMatrix=predictorMatrix, seed=NA,
newobj_df='imp_new', newobj_mids='mids_new')
expect_length(newImp, 3)
expect_length(newImp$sim1, 3)
expect_length(newImp$sim2, 3)
expect_length(newImp$sim3, 3)
expect_true("character" %in% class(newImp$sim1$method))
expect_equal(as.character(newImp$sim1$method), c("pmm","norm","pmm","pmm","pmm","","","","","","polyreg"))
expect_true("matrix" %in% class(newImp$sim1$predictorMatrix))
expect_true("array" %in% class(newImp$sim1$predictorMatrix))
expect_equal(as.numeric(newImp$sim1$predictorMatrix[,1]), c(0,1,1,1,1,1,1,1,1,1,1))
expect_equal(as.numeric(newImp$sim1$predictorMatrix[,2]), c(1,0,1,1,1,1,1,1,1,1,1))
expect_equal(as.numeric(newImp$sim1$predictorMatrix[,3]), c(1,1,0,1,1,1,1,1,1,1,1))
expect_equal(as.numeric(newImp$sim1$predictorMatrix[,4]), c(0,0,0,0,0,0,0,0,0,0,0))
expect_equal(as.numeric(newImp$sim1$predictorMatrix[,5]), c(1,1,1,1,0,1,1,1,1,1,1))
expect_equal(as.numeric(newImp$sim1$predictorMatrix[,6]), c(0,0,0,0,0,0,0,0,0,0,0))
expect_equal(as.numeric(newImp$sim1$predictorMatrix[,7]), c(1,1,1,1,1,1,0,1,1,1,1))
expect_equal(as.numeric(newImp$sim1$predictorMatrix[,8]), c(1,1,1,1,1,1,1,0,1,1,1))
expect_equal(as.numeric(newImp$sim1$predictorMatrix[,9]), c(1,1,1,1,1,1,1,1,0,1,1))
expect_equal(as.numeric(newImp$sim1$predictorMatrix[,10]), c(1,1,1,1,1,1,1,1,1,0,1))
expect_equal(as.numeric(newImp$sim1$predictorMatrix[,11]), c(1,1,1,1,1,1,1,1,1,1,0))
expect_true("character" %in% class(newImp$sim1$post))
expect_equal(as.character(newImp$sim1$post), c("","","","","imp[[j]][,i]<-squeeze(imp[[j]][,i],c(15,35))","","","","","",""))
numNA_bmi.1 <- ds.numNA('imp_new.1$PM_BMI_CONTINUOUS')
expect_equal(numNA_bmi.1$sim1, 0)
expect_equal(numNA_bmi.1$sim2, 0)
expect_equal(numNA_bmi.1$sim3, 0)
numNA_bmi.2 <- ds.numNA('imp_new.2$PM_BMI_CONTINUOUS')
expect_equal(numNA_bmi.2$sim1, 0)
expect_equal(numNA_bmi.2$sim2, 0)
expect_equal(numNA_bmi.2$sim3, 0)
numNA_bmi.3 <- ds.numNA('imp_new.3$PM_BMI_CONTINUOUS')
expect_equal(numNA_bmi.3$sim1, 0)
expect_equal(numNA_bmi.3$sim2, 0)
expect_equal(numNA_bmi.3$sim3, 0)
numNA_bmi.4 <- ds.numNA('imp_new.4$PM_BMI_CONTINUOUS')
expect_equal(numNA_bmi.4$sim1, 0)
expect_equal(numNA_bmi.4$sim2, 0)
expect_equal(numNA_bmi.4$sim3, 0)
numNA_bmi.5 <- ds.numNA('imp_new.5$PM_BMI_CONTINUOUS')
expect_equal(numNA_bmi.5$sim1, 0)
expect_equal(numNA_bmi.5$sim2, 0)
expect_equal(numNA_bmi.5$sim3, 0)
})
#
# Done
#
context("ds.mice::smk::shutdown")
test_that("shutdown", {
ds_expect_variables(c("D", "impSet.1", "imp_new.1","imp_new.2","imp_new.3","imp_new.4","imp_new.5",
"mids_new","mids_object"))
})
disconnect.studies.dataset.cnsim()
context("ds.mice::smk::done")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.