#'
#' @title Estimation and Sensitivity Analysis for Multiple Causal Mechanisms
#' @description This function is similar to R function \code{multimed} from the
#' \code{mediation} package.
#' @details The function 'multimed' is used for causal mediation analysis when
#' post-treatment mediator-outcome confounders, or alternative mediators causally
#' preceding the mediator of interest, exist in the hypothesized causal mechanisms.
#' It estimates the average causal mediation effects (indirect effects) and the
#' average direct effects under the homogeneous interaction assumption based on a
#' varying-coefficient linear structural equation model. The function also performs
#' sensitivity analysis with respect to the violation of the homogenous interaction
#' assumption. The function can be used for the single experiment design.
#' @param outcome a string character, the name of the outcome variable in 'data'.
#' @param med.main a string character, the name of the mediator of interest. Under
#' the parallel design this is the only mediator variable used in the estimation.
#' @param med.alt vector of character strings indicating the names of the
#' post-treatment confounders, i.e., the alternative mediators affecting both the
#' main mediator and outcome.
#' @param treat a string character, the name of the treatment variable in 'data'.
#' @param covariates vector of character strings representing the names of the
#' pre-treatment covariates.
#' @param data a string character, the name of data frame containing all the
#' above variables.
#' @param sims a number of bootstrap samples used for the calculation of
#' confidence intervals.
#' @param conf.level level to be used for confidence intervals.
#' @param seed a number of a seed random number generator. Default value is NULL.
#' @param datasources a list of \code{\link{DSConnection-class}}
#' objects obtained after login. If the \code{datasources} argument is not specified
#' the default set of connections will be used: see \code{\link{datashield.connections_default}}.
#' @return a summary table of the object of class 'multimed'.
#' @author Demetris Avraam, for DataSHIELD Development Team
#' @export
#'
ds.multimed <- function(outcome = NULL, med.main = NULL, med.alt = NULL, treat = NULL, covariates = NULL,
data = NULL, sims = 1000, conf.level = 0.95, seed = NULL, datasources = NULL){
# look for DS connections
if(is.null(datasources)){
datasources <- DSI::datashield.connections_find()
}
# ensure datasources is a list of DSConnection-class
if(!(is.list(datasources) && all(unlist(lapply(datasources, function(d) {methods::is(d,"DSConnection")}))))){
stop("The 'datasources' were expected to be a list of DSConnection-class objects", call.=FALSE)
}
# verify that outcome, med.main, treat variables are provided
if(is.null(outcome)){
stop(" Please provide the name of the outcome variable!", call.=FALSE)
}
if(is.null(med.main)){
stop(" Please provide the name of the mediator of interest!", call.=FALSE)
}
if(is.null(med.alt)){
stop(" Please provide the name(s) of the alternative mediator(s)!", call.=FALSE)
}
if(is.null(treat)){
stop(" Please provide the name of the treatment variable!", call.=FALSE)
}
# verify that the dataframe name is provided
if(is.null(data)){
stop(" Please provide the name of the data frame!", call.=FALSE)
}
# check if the input objects are defined in all studies
defined.outcome <- dsBaseClient:::isDefined(datasources, paste0(data, "$", outcome))
defined.med.main <- dsBaseClient:::isDefined(datasources, paste0(data, "$", med.main))
defined.treat <- dsBaseClient:::isDefined(datasources, paste0(data, "$", treat))
lapply(med.alt, function(x){dsBaseClient:::isDefined(datasources, paste0(data, "$", x))})
if(!is.null(covariates)){
lapply(covariates, function(x){dsBaseClient:::isDefined(datasources, paste0(data, "$", x))})
}
# transmittable names
outcome.name <- outcome
med.main.name <- med.main
treat.name <- treat
data.name <- data
med.alt.transmit <- paste0(as.character(med.alt), collapse=",")
if(!is.null(covariates)){
covariates.transmit <- paste0(as.character(covariates), collapse=",")
}else{
covariates.transmit <- covariates
}
calltext <- call('multimedDS', outcome.name, med.main.name, med.alt.transmit,
treat.name, covariates.transmit, data, sims, conf.level, seed)
study.summary <- DSI::datashield.aggregate(datasources, calltext)
return(study.summary)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.