# Low (A) and High (B) abundance (n_jt) prediction
# ANOVA and plot set-up
# March 2019
# selected group
# reduce to low abundance only data only
low <- c(10,11,12,13,14,15)
# head(abund.dat5)
# str(abund.dat5$trip)
# out.N comes from source(manuscript-source-code.R)
low.abund.dat <- abund.dat5 %>%
# mutate(N = mean.lam) %>% # for when using out.N
filter(trip == 10 | trip == 11 | trip == 12 | trip == 13 | trip == 14 | trip == 15)
# filter(low.abund.dat, trip.no == 15)$true.date
# summary for plots
# create summarised datasets of need
low.cond.sum <- low.abund.dat %>%
group_by(valley, control,Conditions) %>%
summarise(N.count = n(),
N = mean(N, rm.na = TRUE),
tvalue = qt(p = 0.025, df = N.count - 1, lower.tail = FALSE),
low.se = mean(se.N),
lcl.low.tv = N - (tvalue*low.se),
ucl.low.tv = N + (tvalue*low.se),
lcl.low = N - (1.96*low.se),
ucl.low = N + (1.96*low.se))
low.con <- low.abund.dat %>%
group_by(control) %>%
summarise(N.count = n(),
N = mean(N, rm.na = TRUE),
tvalue = qt(p = 0.025, df = N.count - 1, lower.tail = FALSE),
low.se = mean(se.N),
lcl.low.tv = N - (tvalue*low.se),
ucl.low.tv = N + (tvalue*low.se),
lcl.low = N - (1.96*low.se),
ucl.low = N + (1.96*low.se))
low.con1 <- low.con %>%
mutate(lcl.low = ifelse(lcl.low < 0, 0, lcl.low))
# test.dat.1 <- low.abund.dat %>%
# select(N, valley, control, Conditions, trip, grid, grid.n, month,year)
low.mod1 <- glm(N ~ control, family = "gaussian", data = low.abund.dat)
summary.low.mod1 <- summary(low.mod1)
low.mod2 <- glm(N ~ control + valley, family = "gaussian", data = low.abund.dat)
summary.low.mod2 <- summary(low.mod2)
low.mod3 <- glm(N ~ control + valley + Conditions, family = "gaussian", data = low.abund.dat)
summary.low.mod3 <- summary(low.mod3)
low.mod3.log <- glm(log(N) ~ control + valley + Conditions, family = "gaussian", data = low.abund.dat)
summary.low.mod3.log <- summary(low.mod3.log)
# summaries
# summary(low.mod4)
# html and pdf only
# jtools::summ(low.mod2.n)
# ??jtools
# parameters for extraction
# plot_summs(low.mod2, scale = TRUE, plot.distributions = TRUE, inner_ci_level = .9)
co.effs <- c(row.names(as.data.frame(summary(low.mod3)$coefficients)))
# summary
s.final.model <- summary(low.mod3)
# s.final.model$coefficients[2,4]
anova(low.mod3, test = "F")
# family modelling options?
# low.mod3.1 <- glm(n.seed.c ~ valley + control + Conditions, family = "poisson", data = low.abund.dat)
summary.low.mod3<- summary(low.mod3)
#variables
mods.name <- c("low.mod1", "low.mod2", "low.mod3")
model.aic <- c(summary.low.mod1$aic,summary.low.mod2$aic,summary.low.mod3$aic)
mod.dev <- c(summary.low.mod1$deviance,summary.low.mod2$deviance,summary.low.mod3$deviance)
#dataset output
mod.selection <- tibble(model.aic = model.aic,
mods.name = mods.name,
mod.dev = mod.dev)
#
#
# # NOT USED!!
#
# # data --------------------------------------------------------------------
# #import data
# source("./R/wrangling/Data_CRinput_mice_jan2019.R")
#
# # Root to core computer as cant push to git... toooo much
# model <- readRDS("C://Code/final_cauchy_2_5.rds")
#
# # N_trip
# # n.trip
# # N_grid
# # n.grid
#
# #full mouse dataset first so each extra bind adds NA to turn to zeros to plot
# meanM <- read_csv("C://Users/s435389/Dropbox/data/old data/CR_output_N.csv") %>%
# # select (valley, grid ,trip ,mean.lam) %>%
# select (grid ,trip ,mean.lam,valley) %>%
# transmute(trip = trip,
# grid = as.factor(grid),
# est.dat = mean.lam,
# valley = as.factor(valley),
# spp = "mice")
#
# # table(meanM$grid)
# # table(meanS$grid)
#
# # rats have only 80 estimates not 144
# meanR <- read_csv("C://Users/s435389/Dropbox/data/mna_allrat.csv") %>%
# # select (valley, grid ,trip.no ,n) %>%
# select (grid ,trip.no ,n) %>%
# transmute(trip = trip.no,
# grid = as.factor(grid),
# est.dat = n,
# # valley = as.factor(valley),
# spp = "rats")
#
# meanS <- read_csv("C://Users/s435389/Dropbox/data/old data/Seed_data_hol_egl_total.csv") %>%
# select (grid ,trip.no ,seed) %>%
# transmute(trip = trip.no,
# grid = ifelse(grid == "egl R1" , NA, grid),
# grid = ifelse(grid == "hol R1" , NA, grid),
# grid = ifelse(grid == "egl R2" , NA, grid),
# grid = ifelse(grid == "hol R2" , NA, grid),
# est.dat = seed,
# spp = "seed") %>%
# drop_na() %>%
# droplevels()
#
# #bind rats and dataframe should stay the same
# dat.msr <- bind_rows(meanM, meanS, meanR)
#
# # table(dat.msr$trip)
#
# meanM.R.S <- dat.msr %>%
# mutate(control = NA,
# group = as.factor(paste(trip,grid)),
# grid = as.factor(grid),
# valley = ifelse(grepl("egl", grid), "egl","hol" ),
# grid = ifelse(grid == "egl R1" , NA, grid),
# grid = ifelse(grid == "hol R1" , NA, grid),
# grid = ifelse(grid == "egl R2" , NA, grid),
# grid = ifelse(grid == "hol R2" , NA, grid))
#
# # correct labels....
# for(i in 1:length(meanM.R.S$valley)) {
# meanM.R.S$control[i] <- ifelse(meanM.R.S$valley[i] == "hol" & meanM.R.S$trip[i] > 12, "control", "no control")
# meanM.R.S$control[i] <- ifelse(meanM.R.S$valley[i] == "egl", "control", meanM.R.S$control[i])
# }
#
# dat.msr.1 <- meanM.R.S %>%
# #drop_na() %>%
# mutate(valley = as.factor(valley),
# Conditions = paste(control, valley),
# Conditions = as.factor(Conditions),
# spp = as.factor(spp),
# control = as.factor(control),
# true.date = as.factor(trip))
#
# dat.msr.1$Conditions <- factor(dat.msr.1$Conditions, levels = c("control egl", "no control hol", "control hol"))
#
# levels(dat.msr.1$true.date) <- as.Date(as.character(c("1999-05-01","1999-08-01","1999-11-01",
# "2000-02-01","2000-05-01","2000-08-01","2000-11-01",
# "2001-02-01","2001-05-01","2001-08-01","2001-11-01",
# "2002-05-01","2002-11-01",
# "2003-02-01","2003-05-01","2003-08-01","2003-11-01",
# "2004-02-01","2004-05-01","2004-08-01")))
# # table(dat.msr.1$trip,dat.msr.1$true.date)
#
# #summary plotting dataset
# mean1 <- dat.msr.1 %>%
# group_by(Conditions,spp,trip,valley,true.date) %>%
# summarise(mean.s = mean(est.dat),
# sd.s = sd(est.dat),
# se.s = sd(est.dat)/sqrt(length(est.dat))*1.96,
# lcl.s = mean(est.dat) - (sd(est.dat)/sqrt(length(est.dat))*1.96),
# ucl.s = mean(est.dat) + (sd(est.dat)/sqrt(length(est.dat))*1.96)
# )
#
# # glimpse(mean1)
#
# #more summaries
# mean2 <- dat.msr.1 %>%
# group_by(spp,trip) %>%
# summarise(mean.s = mean(est.dat),
# sd.s = sd(est.dat),
# se.s = sd(est.dat)/sqrt(length(est.dat))*1.96,
# lcl.s = mean(est.dat) - (sd(est.dat)/sqrt(length(est.dat))*1.96),
# ucl.s = mean(est.dat) + (sd(est.dat)/sqrt(length(est.dat))*1.96)
# )
#
# # glimpse(mean2)
#
# #summary plotting dataset
# mean3 <- dat.msr.1 %>%
# group_by(spp,valley) %>%
# summarise(mean.s = mean(est.dat),
# sd.s = sd(est.dat),
# se.s = sd(est.dat)/sqrt(length(est.dat))*1.96,
# lcl.s = mean(est.dat) - (sd(est.dat)/sqrt(length(est.dat))*1.96),
# ucl.s = mean(est.dat) + (sd(est.dat)/sqrt(length(est.dat))*1.96)
# )
#
# # glimpse(mean3)
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.