# Rate of increase between Autumn and Winter
# (May and August rate of change)
# May mice abundace, seed and rat data
# Overall Data
# data --------------------------------------------------------------------
# reduced data
# out.pC.1 <- filter(out.final.2, month == "Nov")
#main data from manuscript main file
# but needs valley, control and Conditions
out.final.3 <- out.full.136 %>%
mutate(mean.r = as.numeric(mean.r),
lag.sjt = as.numeric(lag.sjt),
valley = factor(valley),
control = factor(ifelse(controlT == "holN", "No", "Yes")),
Conditions = factor(
ifelse(grid.id == "M1" | grid.id == "M2",
"rats.removed", "rats.present")
),
lcl.r = as.numeric(lcl.r),
ucl.r = as.numeric(ucl.r),
month = factor(month, levels = c("Feb", "May", "Aug", "Nov")))
# glimpse(out.final.3$month)
# glimpse(out.final.3$controlT)
# names(out.final.2)
# levels(out.final.3$month)
# out.final.3$month
# levels(out.final.3$month)
# used to be
# out.r <- read_csv("C://Users/s435389/Dropbox/data/CR_output_pred.csv")
# lines summary -----------------------------------------------------------
pred.lines.seed <- out.final.3 %>%
drop_na() %>%
# group_by(valley, control, Conditions, month) %>%
group_by(controlT, month) %>%
summarise(
b0 = mean(b0),
b.seed = mean(b.seed),
b.dens = mean(b.dens),
b.rat = mean(b.rat),
se.r = mean(se.r),
M.seed = mean(lag.sjt),
M.dens = mean(lag.N),
M.rat = mean(lag.rat.mna),
MAX.rat = max(lag.rat.mna),
MAX.seed = max(lag.sjt),
MAX.dens = max(lag.N),
MAX.r = max(mean.r),
min.seed = min(lag.sjt),
min.dens = min(lag.N),
min.rat = min(lag.rat.mna),
min.r = min(mean.r),
min.pt = b0 + (b.seed * min.seed),
max.pt = b0 + (b.seed * MAX.seed)
) %>%
ungroup()
# %>%
# mutate(month = factor(as.character(month),
# levels = c("Feb","May","Aug","Nov")))
pred.lines.1 <- pred.lines.seed
# table(pred.lines.s5$month)
# str(pred.lines.s5$month)
# str(out.final.3$month)
# # lines data for seed -----------------------------------------------------
# Seed lines (12x) --------------------------------------------------------
pred.lines.s2 <- pred.lines.seed %>%
select(month,controlT, min.r, MAX.r, min.seed, MAX.seed) %>%
droplevels() %>%
gather(value = mean.r, key = pt.lines, min.r:MAX.seed)
pred.lines.s2.1 <- filter(pred.lines.s2, pt.lines == "MAX.seed" |
pt.lines == "min.seed") %>%
droplevels() %>%
mutate(log.cum.seed = mean.r) %>%
drop_na()
log.cum.seed <- pred.lines.s2.1$log.cum.seed
# controlT <- pred.lines.s2.1$controlT
pred.lines.s3 <- cbind(pred.lines.s2[1:24, ], log.cum.seed)
pred.lines.s4 <- pred.lines.s3 %>%
mutate(pt.lines = factor(pt.lines)) %>%
drop_na()
pred.lines.s5 <- pred.lines.s4 %>%
mutate(lag.sjt = log.cum.seed,
valley = factor(rep(c("egl", "hol", "hol"), 2, each = 4)),
control = factor(rep(c("Yes", "Yes", "No"), 2, each = 4))) %>%
drop_na()
# glimpse(pred.lines.1)
####FUKED!!!!!!!!!!!!!###########
# factor sort!
month.refactor <- factor(as.numeric(pred.lines.s5$month))
# ?recode_factor
pred.lines.s5$month <- recode(month.refactor, "1" = "May", "2" = "Nov", "3" = "Feb", "4" = "Aug")
# lines data for density --------------------------------------------------
pred.lines.dens <- out.final.3 %>%
drop_na() %>%
# group_by(valley, control, Conditions, month) %>%
group_by(controlT, month) %>%
summarise(
b0 = mean(b0),
b.seed = mean(b.seed),
b.dens = mean(b.dens),
b.rat = mean(b.rat),
se.r = mean(se.r),
M.seed = mean(lag.sjt),
M.dens = mean(lag.N),
M.rat = mean(lag.rat.mna),
MAX.rat = max(lag.rat.mna),
MAX.seed = max(lag.sjt),
MAX.dens = max(lag.N),
MAX.r = max(mean.r),
min.seed = min(lag.sjt),
min.dens = min(lag.N),
min.rat = min(lag.rat.mna),
min.r = min(mean.r),
min.pt = b0 + (b.dens * min.dens),
max.pt = b0 + (b.dens * MAX.dens)
) %>%
ungroup()
pred.lines.d2 <- pred.lines.dens %>%
select(month,controlT, min.r, MAX.r, min.dens, MAX.dens) %>%
droplevels() %>%
gather(value = mean.r, key = pt.lines, min.r:MAX.dens)
pred.lines.d2.1 <- filter(pred.lines.d2, pt.lines == "MAX.dens" |
pt.lines == "min.dens") %>%
droplevels() %>%
mutate(lag.N = mean.r) %>%
drop_na()
lag.N <- pred.lines.d2.1$lag.N
# controlT <- pred.lines.s2.1$controlT
pred.lines.d3 <- cbind(pred.lines.d2[1:24, ], lag.N)
pred.lines.d4 <- pred.lines.d3 %>%
mutate(pt.lines = factor(pt.lines)) %>%
drop_na()
pred.lines.d5 <- pred.lines.d4 %>%
mutate(lag.N = lag.N,
valley = factor(rep(c("egl", "hol", "hol"), 2, each = 4)),
control = factor(rep(c("Yes", "Yes", "No"), 2, each = 4))) %>%
drop_na()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.