Description Usage Arguments Value Examples
effInd
computes the global efficiency indicator. It is defined as the
difference between the area under the polygonal line of the absolute relative pseudo-bias,
and the area under the straight line corresponding to random selection.
1 |
matrix |
an object of class matrix, containing two columns: the absolute relative pseudo-bias, ARB, for every value in the column edPriority, which represents the number of units analyzed. |
an object of class numeric with the value of global efficiency indicator.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Not run:
fitPar <- new(Class = 'fitParam',
edData = FFall_AS.StQ, rawData = FGall_AS.StQ,
selParam = list(ntreeTry=1000, stepFactor=2, improve=0.05,
trace=TRUE, plot=TRUE, doBest = TRUE,
ptrain = 0.8, DD = DDactu),
valParam = list(edEffInd = effInd, priorBin = 5,
dataVal = c('Train','Test')))
ObsPredPar1 <- new(Class = 'categObsPredModelParam',
Data = FGall_AS.StQ,
VarRoles = list(Units = IDUnits,
Domains = character(0),
DesignW = DesignW,
Regressands = Regressands,
Regressors = Regressors
))
ObsPredPar1 <- fitModels(ObsPredPar1, fitPar, na.as.category)
ObsPredPar1 <- computeVal(ObsPredPar1, fitPar, na.as.category)
# computeVal calls computeEdEfficiency calls (computeRunningEstim and effInd)
## End(Not run)#'
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.