## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
library(dotwhisker)
## load data from psre package
data(wvs)
## make civilization factor, religious society variable
## and percent with at least secondary education.
wvs <- wvs %>% mutate(
civ = case_when(
civ == 4 ~ "Islamic",
civ == 6 ~ "Latin American",
civ == 7 ~ "Orthodox",
civ == 8 ~ "Sinic",
civ == 9 ~ "Western",
TRUE ~ "Other"),
civ = factor(civ, levels=c("Western", "Sinic", "Islamic", "Latin American",
"Orthodox", "Other")),
pct_sec_plus = pct_secondary + pct_some_univ + pct_univ_degree,
rel_soc = factor(as.numeric(pct_high_rel_imp > .75),
levels=c(0,1), labels=c("No", "Yes"))
)
## make democracy factor variable and retain only each country's
## first observation in the data.
wvs1 <- wvs %>%
mutate(democrat= factor(democrat, levels=1:2,
labels=c("New Democracy",
"Established Democracy"))) %>%
group_by(country) %>%
arrange(wave) %>%
slice_head(n=1) %>%
ungroup %>%
arrange(democrat, gini_disp) %>%
dplyr::select(civ, resemaval, gdp_cap, pop, rel_soc,
pct_sec_plus, polrt) %>%
na.omit() %>%
## replace political rights with 1 if it is missing
mutate(polrt = case_when(polrt == "" ~ "1",
TRUE ~ polrt))
## divide gdp_cap by 10000 so the coefficients do not
## get too small.
wvs1 <- wvs1 %>% mutate(gdp_cap10 = gdp_cap/10000)
## estimate model
m7 <- lm(resemaval ~ civ + gdp_cap10 + pct_sec_plus + rel_soc, data=wvs1)
## Using 0 as the estimate for the reference category,
## calculate the optimal visual hypothesis testing
## confidence level for the plot
bpr <- c(0, coef(m7)[-1])
vpr <- cbind(0, rbind(0, vcov(m7)[-1, -1]))
o <- optCL(m7, b=bpr, v=vpr)
ol7 <- mean(o$opt_levels)
## find critical-value for t-statistic
crit7 <- 1-(1-ol7)/2
## divide quantitative independent variables by 2sd
tmp2 <- wvs1 %>%
mutate(across(c(gdp_cap10, pct_sec_plus), ~.x/(2*sd(.x))))
## re-estimate model with standardized data
m7c <- lm(resemaval ~ civ + gdp_cap10 + pct_sec_plus + rel_soc, data=tmp2)
bpr <- c(0, coef(m7c)[-1])
vpr <- cbind(0, rbind(0, vcov(m7c)[-1, -1]))
o <- optCL(m7, b=bpr, v=vpr)
ol7c <- mean(o$opt_levels)
## find critical-value for t-statistic
crit7c <- 1-(1-ol7c)/2
## collect coefficients, standard errors and confidence intervals
term_dat <- tibble(
term = colnames(model.matrix(m7))[-1],
estimate = coef(m7)[-1],
se =sqrt(diag(vcov(m7)))[-1],
conf.low = estimate - qt(crit7, m7$df.residual)*se,
conf.high = estimate + qt(crit7, m7$df.residual)*se
) %>%
## remove se and rename terms, reorder based on size.
## note that I reordered the coefficients by size within
## civilization and then across the other variables.
dplyr::select(-se) %>%
mutate(term = c("Sinic", "Islamic", "Latin American", "Orthodox",
"Other", "GDP/capita", "Post-Secondary\nEducation",
"Religious Society"))
term_dat <- term_dat[c(3,5,4,1,2,6,7,8), ]
## A. Raw Values
## the dwplot function is from the dotwhisker package. s
bracket <- list(c("Civilization\n(Reference=Western)", "Latin American", "Islamic"))
{dwplot(term_dat,
vline = geom_vline(xintercept=0, lty=2),
by_2sd = FALSE) +
scale_colour_manual(values="black") +
scale_x_continuous(breaks=c(-.15,-.1, -.05, 0, 0.05)) +
theme_bw() +
theme(legend.position = "none",
panel.grid=element_blank()) +
labs(x = "Coefficient")} %>%
add_brackets(bracket)
# ggssave("output/f6_5a.png", height=5, width=6.5, units="in", dpi=300)
term_dat <- tibble(
term = colnames(model.matrix(m7c))[-1],
estimate = coef(m7c)[-1],
se =sqrt(diag(vcov(m7c)))[-1],
conf.low = estimate - qt(crit7c, m7c$df.residual)*se,
conf.high = estimate + qt(crit7c, m7c$df.residual)*se
) %>%
dplyr::select(-se) %>%
mutate(term = c("Sinic", "Islamic", "Latin American", "Orthodox",
"Other", "GDP/capita", "Post-Secondary\nEducation",
"Religious Society"))
term_dat <- term_dat[c(3,5,4,1,2,6,7,8), ]
## B. Gelman Standardized Values
bracket <- list(c("Civilization\n(Reference=Western)", "Latin American", "Islamic"))
{dwplot(term_dat,
vline = geom_vline(xintercept=0, lty=2),
by_2sd = FALSE) +
scale_colour_manual(values="black") +
theme_bw() +
scale_x_continuous(breaks=c(-.15,-.1, -.05, 0, 0.05, 0.1)) +
theme(legend.position = "none",
panel.grid=element_blank()) +
labs(x = "Coefficient")} %>%
add_brackets(bracket)
# ggssave("output/f6_5b.png", height=5, width=6.5, units="in", dpi=300)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.