## excursions.inla.R
##
## Copyright (C) 2012, 2013, 2014 David Bolin, Finn Lindgren
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
#' Contour maps and contour map quality measures for latent Gaussian models
#'
#' `contourmap` is used for calculating contour maps and quality measures for contour maps for Gaussian models.
#'
#' @param mu Expectation vector.
#' @param Q Precision matrix.
#' @param vars Precomputed marginal variances (optional).
#' @param n.levels Number of levels in contour map.
#' @param ind Indices of the nodes that should be analyzed (optional).
#' @param levels Levels to use in contour map.
#' @param type Type of contour map. One of:
#' \describe{
#' \item{'standard' }{Equidistant levels between smallest and largest value of the posterior mean (default).}
#' \item{'pretty' }{Equally spaced 'round' values which cover the range of the values in the posterior mean.}
#' \item{'equalarea' }{Levels such that different spatial regions are approximately equal in size.}
#' \item{'P0-optimal' }{Levels chosen to maximize the P0 measure.}
#' \item{'P1-optimal' }{Levels chosen to maximize the P1 measure.}
#' \item{'P2-optimal' }{Levels chosen to maximize the P2 measure.}
#' }
#' @param compute A list with quality indices to compute
#' \describe{
#' \item{'F': }{TRUE/FALSE indicating whether the contour map function should be computed (default TRUE).}
#' \item{'measures': }{A list with the quality measures to compute ("P0", "P1", "P2") or corresponding bounds based only on the marginal probabilities ("P0-bound", "P1-bound", "P2-bound").}
#' }
#' @param use.marginals Only marginal distributions are used when finding P-optimal maps (default TRUE).
#' @param alpha Maximal error probability in contour map function (default=1).
#' @param F.limit The limit value for the computation of the F function. F is set to NA for all nodes where F<1-F.limit. Default is F.limit = `alpha`.
#' @param n.iter Number or iterations in the MC sampler that is used for calculating the quantities in `compute`. The default value is 10000.
#' @param verbose Set to TRUE for verbose mode (optional).
#' @param max.threads Decides the number of threads the program can use. Set to 0 for using the maximum number of threads allowed by the system (default).
#' @param seed Random seed (optional).
#'
#' @return `contourmap` returns an object of class "excurobj" with the following elements
#' \item{u }{Contour levels used in the contour map.}
#' \item{n.levels }{The number of contours used.}
#' \item{u.e }{The values associated with the level sets G_k.}
#' \item{G }{A vector which shows which of the level sets G_k each node belongs to.}
#' \item{map }{Representation of the contour map with `map[i]=u.e[k]` if i is in `G_k`.}
#' \item{F }{The contour map function (if computed).}
#' \item{M }{Contour avoiding sets (if `F` is computed). \eqn{M=-1} for all non-significant nodes and \eqn{M=k} for nodes that belong to \eqn{M_k}.}
#' \item{P0/P1/P2 }{Calculated quality measures (if computed).}
#' \item{P0bound/P1bound/P2bound }{Calculated upper bounds quality measures (if computed).}
#' \item{meta }{A list containing various information about the calculation.}
#' @export
#' @details
#' The Gaussian model is specified using the mean `mu` and the precision matrix
#' `Q`. The contour map is then computed for the mean, using either the contour
#' levels specified in `levels`, or `n.levels` contours that are placed according
#' to the argument `type`.
#'
#' A number of quality measures can be computed based based on the specified contour map
#' and the Gaussian distribution. What should be computed is specified using the
#' `compute` argument. For details on these quanties, see the reference below.
#'
#' @author David Bolin \email{davidbolin@@gmail.com}
#' @references Bolin, D. and Lindgren, F. (2017) *Quantifying the uncertainty of contour maps*, Journal of Computational and Graphical Statistics, vol 26, no 3, pp 513-524.
#'
#' Bolin, D. and Lindgren, F. (2018), *Calculating Probabilistic Excursion Sets and Related Quantities Using excursions*, Journal of Statistical Software, vol 86, no 1, pp 1-20.
#' @seealso [contourmap.inla()], [contourmap.mc()], [contourmap.colors()]
#' @examples
#' n <- 10
#' Q <- Matrix(toeplitz(c(1, -0.5, rep(0, n - 2))))
#' mu <- seq(-5, 5, length = n)
#' lp <- contourmap(mu, Q,
#' n.levels = 2,
#' compute = list(F = FALSE, measures = c("P1", "P2")),
#' max.threads = 1
#' )
#' # Plot the contourmap
#' plot(lp$map)
#' # Display the quality measures
#' cat(c(lp$P1, lp$P2))
contourmap <- function(mu,
Q,
vars,
n.levels,
ind,
levels,
type = c(
"standard",
"pretty",
"equalarea",
"P0-optimal",
"P1-optimal",
"P2-optimal"
),
compute = list(F = TRUE, measures = NULL),
use.marginals = TRUE,
alpha,
F.limit,
n.iter = 10000,
verbose = FALSE,
max.threads = 0,
seed = NULL) {
type <- match.arg(type)
if (missing(alpha) || is.null(alpha)) {
alpha <- 0.1
}
if (missing(F.limit)) {
F.limit <- 0.99
} else {
F.limit <- max(alpha, F.limit)
}
if (missing(n.levels) || is.null(n.levels)) {
if (missing(levels) || is.null(levels)) {
stop("Must supply levels or n.levels")
} else {
n.levels <- length(levels)
}
}
if (!missing(mu)) {
mu <- private.as.vector(mu)
}
if (!missing(vars)) {
vars <- private.as.vector(vars)
}
if (!missing(ind)) {
ind <- private.as.vector(ind)
}
if (!missing(Q)) {
Q <- private.as.dgCMatrix(Q)
}
measure <- NULL
if (!is.null(compute$measures)) {
measure <- match.arg(compute$measures,
c("P0", "P1", "P2", "P0-bound", "P1-bound", "P2-bound"),
several.ok = TRUE
)
}
if (type == "standard") {
if (verbose) cat("Creating contour map\n")
lp <- excursions.levelplot(
mu = mu, n.levels = n.levels, ind = ind,
levels = levels, equal.area = FALSE
)
} else if (type == "pretty") {
if (verbose) cat("Creating pretty contour map\n")
lp <- excursions.levelplot(
mu = mu, n.levels = n.levels, ind = ind,
levels = levels, equal.area = FALSE, pretty.cm = TRUE
)
n.levels <- lp$n.levels
} else if (type == "equalarea") {
if (verbose) cat("Creating equal area contour map\n")
lp <- excursions.levelplot(
mu = mu, n.levels = n.levels, ind = ind,
levels = levels, equal.area = TRUE
)
} else if (type == "P0-optimal" || type == "P1-optimal" || type == "P2-optimal") {
if (!missing(levels)) {
warning("Not using supplied levels for optimal contour map\n")
if (!missing(n.levels)) {
if (n.levels != length(levels)) {
warning("n.levels != length(levels), using n.levels\n")
}
} else {
n.levels <- length(levels)
}
}
if (missing(vars) && missing(Q)) {
stop("Variances must be supplied when creating optimal contour map")
} else if (missing(vars)) {
vars <- excursions.variances(Q = Q, max.threads = max.threads)
}
if (use.marginals == TRUE) {
if (missing(Q)) {
stop("The precision matrix must be supplied unless marginals are used")
}
}
if (type == "P0-optimal") {
if (verbose) cat("Creating P0-optimal contour map\n")
opt.measure <- 0
} else if (type == "P1-optimal") {
if (verbose) cat("Creating P1-optimal contour map\n")
opt.measure <- 1
} else if (type == "P2-optimal") {
if (verbose) cat("Creating P2-optimal contour map\n")
opt.measure <- 2
}
lp <- excursions.opt.levelplot(
mu = mu, vars = vars, Q = Q,
n.levels = n.levels, measure = opt.measure,
use.marginals = use.marginals, ind = ind
)
}
F.calculated <- FALSE
if (!is.null(measure)) {
if (missing(Q)) {
stop("precision matrix must be supplied if measure should be calculated")
}
for (i in seq_along(measure)) {
if (measure[i] == "P1") {
if (n.levels > 1) {
if (verbose) cat("Calculating P1-measure\n")
tmp <- Pmeasure(lp = lp, mu = mu, Q = Q, ind = ind, type = 1,
seed = seed, n.iter = n.iter, max.threads = max.threads)
lp$P1 <- tmp$P
lp$P1.error <- tmp$E
} else {
lp$P1 <- 1
lp$P1.error <- 0
}
} else if (measure[i] == "P2") {
if (verbose) cat("Calculating P2-measure\n")
tmp <- Pmeasure(lp = lp, mu = mu, Q = Q, ind = ind, type = 2,
seed = seed, n.iter = n.iter, max.threads = max.threads)
lp$P2 <- tmp$P
lp$P2.error <- tmp$E
} else if (measure[i] == "P0") {
if (verbose) cat("Calculating P0-measure and contour map function\n")
p <- contourfunction(
lp = lp, mu = mu, Q = Q, vars = vars, ind = ind,
alpha = alpha, F.limit = F.limit,
n.iter = n.iter, max.threads = max.threads,
seed = seed, verbose = verbose
)
F.calculated <- TRUE
} else if (measure[i] == "P0-bound") {
if (missing(vars)) {
vars <- excursions.variances(Q = Q, max.threads = max.threads)
}
lp$P0.bound <- Pmeasure.bound(lp = lp, mu = mu, vars, type = 0, ind = ind)
} else if (measure[i] == "P1-bound") {
if (missing(vars)) {
vars <- excursions.variances(Q = Q, max.threads = max.threads)
}
lp$P1.bound <- Pmeasure.bound(lp = lp, mu = mu, vars, type = 1, ind = ind)
} else if (measure[i] == "P2-bound") {
if (missing(vars)) {
vars <- excursions.variances(Q = Q, max.threads = max.threads)
}
lp$P2.bound <- Pmeasure.bound(lp = lp, mu = mu, vars, type = 2, ind = ind)
}
}
}
if (!F.calculated) {
if (is.null(compute$F) || compute$F) {
if (verbose) cat("Calculating contour map function\n")
p <- contourfunction(
lp = lp, mu = mu, Q = Q, vars = vars, ind = ind,
alpha = alpha, F.limit = F.limit,
n.iter = n.iter, max.threads = max.threads,
seed = seed, verbose = verbose
)
F.calculated <- TRUE
}
}
if (missing(ind) || is.null(ind)) {
ind <- seq_len(length(mu))
} else if (is.logical(ind)) {
ind <- which(ind)
}
if (F.calculated) {
lp$P0 <- mean(p$F[ind])
lp$F <- p$F
lp$E <- p$E
lp$M <- p$M
lp$rho <- p$rho
# } else {
# lp$E <- NULL
}
lp$meta <- list(
calculation = "contourmap",
F.limit = F.limit,
F.computed = compute$F,
alpha = alpha,
levels = lp$u,
type = "!=",
contourmap.type = type,
n.iter = n.iter,
mu.range = range(mu[ind]),
mu = mu[ind],
ind = ind,
call = match.call()
)
class(lp) <- "excurobj"
return(lp)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.