#' Plot the underhill smoother and associated confidence intervals for a species.
#'
#' Fit a line through the reporting rates and its associated 1 and 2 sigma confidence intervals. 1 and 2 sigma roughly correspond to 67 percent and 95 percent confidence intervals. The line is over Pentades defined in the `underhill_smoother()` function.
#'
#' The dark, thinner interval is the 1 sigma interval and corresponds to 67% confidence, whereas the 2 sigma interval corresponds to a 95% confidence.
#'
#' This function only takes in one dataframe and is intended for deep study of one species. To make multi species comparisons use `underhill_multiple_curves`
#'
#' @param underhill_smoother The dataframe returned by the `underhill_smoother function`.
#' @return A ggplot plot
#' @examples
#'
#' \dontrun{
#'
#'
#' underhill_curves(underhill_smoother)
#'
#' }
#'
#'
underhill_single_curves <- function(underhill_smoother){
species_id = underhill_smoother$SpeciesId[1]
species_name = underhill_smoother$SpeciesName[1]
output_plot <- underhill_smoother %>%
ggplot(aes(y = fit)) +
theme_light() +
# plot points, line and the intervals
geom_point(aes(x = DateInYear, y = ReportingRate)) +
geom_smooth(aes(x = DateInYear, ymin = fit - 2*se, ymax = fit + 2*se), stat = 'identity') +
geom_smooth(aes(x = DateInYear, ymin = fit - 1*se, ymax = fit + 1*se), stat = 'identity') +
# fix scales
scale_x_date(labels = date_format("%b"), date_breaks = 'month') +
scale_y_continuous(labels = percent_format(), limits = c(0, 1)) +
# add labels
xlab('Month') +
ylab('Reporting rate') +
ggtitle(paste0(species_id, ": ", species_name))
output_plot
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.