Description Usage Arguments Details Value Author(s) References See Also Examples
Simulates data for analysis by gjam.
1 | gjamSimData(n = 1000, S = 10, Q = 5, x = NULL, nmiss = 0, typeNames, effort = NULL)
|
n |
Sample size |
S |
Number of response variables (columns) in |
Q |
Number of predictors (columns) in design matrix |
x |
design |
nmiss |
Number of missing values to in |
typeNames |
Character vector of data types, see Details |
effort |
List containing ' |
Generates simulated data and parameters for analysis by gjam. Because both parameters and data are stochastic, not all simulations will give good results.
typeNames can be 'PA' (presenceAbsence), 'CA'
(continuous), 'DA' (discrete), 'FC' (fractional composition),
'CC' (count composition), 'OC' (ordinal counts), and 'CAT' (categorical levels). If more than one 'CAT' is included, each defines a multilevel categorical reponse.
One additional type, 'CON' (continuous), is not censored at zero by default.
If defined as a single character value typeNames applies to all columns in y. If not, typeNames is length-S character vector, identifying each response by column in y. If a column 'CAT' is included, a random number of levels will be generated, a, b, c, ....
A more detailed vignette is can be obtained with:
browseVignettes('gjam')
website 'http://sites.nicholas.duke.edu/clarklab/code/'.
formula |
R formula for model, e.g., |
xdata |
|
ydata |
|
y |
response as a |
w |
|
typeY |
vector of data types corresponding to columns in |
typeNames |
vector of data types corresponding to columns in |
trueValues |
list containing true parameter values |
effort |
see Arguments. |
James S Clark, jimclark@duke.edu
Clark, J.S., D. Nemergut, B. Seyednasrollah, P. Turner, and S. Zhang. 2016. Generalized joint attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecological Monographs 87, 34-56.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | ## Not run:
## ordinal data, show true parameter values
sim <- gjamSimData(S = 5, typeNames = 'OC')
sim$ydata[1:5,] # example data
sim$trueValues$cuts # simulated partition
sim$trueValues$beta # coefficient matrix
## continuous data censored at zero, note latent w for obs y = 0
sim <- gjamSimData(n = 5, S = 5, typeNames = 'CA')
sim$w
sim$y
## continuous and discrete data
types <- c(rep('DA',5), rep('CA',4))
sim <- gjamSimData(n = 10, S = length(types), Q = 4, typeNames = types)
sim$typeNames
sim$ydata
## composition count data
sim <- gjamSimData(n = 10, S = 8, typeNames = 'CC')
totalCount <- rowSums(sim$ydata)
cbind(sim$ydata, totalCount) # data with sample effort
## multiple categorical responses - compare matrix y and data.frqme ydata
types <- rep('CAT',2)
sim <- gjamSimData(S = length(types), typeNames = types)
head(sim$ydata)
head(sim$y)
## discrete abundance, heterogeneous effort
S <- 5
n <- 1000
ef <- list( columns = 1:S, values = round(runif(n,.5,5),1) )
sim <- gjamSimData(n, S, typeNames = 'DA', effort = ef)
sim$effort$values[1:20]
## combinations of scales, partition only for 'OC' columns
types <- c('OC','OC','OC','CC','CC','CC','CC','CC','CA','CA','PA','PA')
sim <- gjamSimData(S = length(types), typeNames = types)
sim$typeNames
head(sim$ydata)
sim$trueValues$cuts
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.