Description Usage Arguments Author(s) References See Also
When using a non-standard t-distribution for your regression likelihood, there is a simple latent variable representation that allows us to develop an EM algorithm. This is a very similar procedure to Lange et al (1989).
1 2 3 4 5 6 7 8 9 | tregress_em(
Y,
alpha,
sig_diag,
nu,
lambda_init = NULL,
Z_init = NULL,
control_args = list()
)
|
Y |
A matrix of numerics with one column. The response variables. |
alpha |
A matrix of numerics, the covariates. It must be that
|
sig_diag |
A vector of numerics. The variances of the elements
in |
nu |
A positive numeric scalar. The known degrees of freedom of the t-distribution. |
lambda_init |
A positive numeric scalar. The initial value of the variance inflation parameter. Defaults to the estimate under Gaussian errors. |
Z_init |
A matrix of numerics with one column. The initial
value of the coefficients of |
control_args |
A list of control arguments for the EM algorithm that is passed to SQUAREM. |
David Gerard
Lange, K.L., Little, R.J. and Taylor, J.M., 1989. "Robust statistical modeling using the t distribution." Journal of the American Statistical Association, 84(408), pp.881-896. doi: 10.1080/01621459.1989.10478852
tregress_obj
for the objective function that
this function maximizes, tregress_fix
for the
fixed point iteration that this function calls.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.