dataFigure1 | R Documentation |
The data, taken from \insertCitec17superb, is an example where the "stand-alone" 95\% confidence interval of the means returns a result in contradiction with the result of a statistical test. The paradoxical result is resolved by using adjusted confidence intervals, here the different-adjusted confidence interval.
data(dataFigure1)
An object of class data.frame.
library(ggplot2)
library(gridExtra)
data(dataFigure1)
options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages
## realize the plot with unadjusted (left) and ajusted (right) 95% confidence intervals
plt1a <- superb(
score ~ grp,
dataFigure1,
adjustments=list(purpose = "single"),
plotStyle="bar" ) +
xlab("Group") + ylab("Score") + labs(title="95% CI\n") +
coord_cartesian( ylim = c(85,115) ) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)
plt1b <- superb(
score ~ grp,
dataFigure1,
adjustments=list(purpose = "difference"),
plotStyle="bar" ) +
xlab("Group") + ylab("Score") + labs(title="Difference-adjusted 95% CI\n") +
coord_cartesian( ylim = c(85,115) ) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)
plt1 <- grid.arrange(plt1a,plt1b,ncol=2)
## realise the correct t-test to see the discrepancy
t.test(dataFigure1$score[dataFigure1$grp==1],
dataFigure1$score[dataFigure1$grp==2],
var.equal=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.