| vc_test_asym | R Documentation | 
This function computes an approximation of the variance component test based on the asymptotic
distribution of a mixture of χ^{2}s using Davies method
from davies
vc_test_asym( y, x, indiv = rep(1, nrow(x)), phi, w, Sigma_xi = diag(ncol(phi)), genewise_pvals = FALSE, homogen_traj = FALSE, na.rm = FALSE )
y | 
 a numeric matrix of dim   | 
x | 
 a numeric design matrix of dim   | 
indiv | 
 a vector of length   | 
phi | 
 a numeric design matrix of size   | 
w | 
 a vector of length   | 
Sigma_xi | 
 a matrix of size   | 
genewise_pvals | 
 a logical flag indicating whether gene-wise p-values should be returned. Default
is   | 
homogen_traj | 
 a logical flag indicating whether trajectories should be considered homogeneous.
Default is   | 
na.rm | 
 logical: should missing values (including   | 
A list with the following elements when the set p-value is computed :
set_score_obs: the approximation of the observed set score
set_pval: the associated set p-value
or a list with the following elements when gene-wise p-values are computed:
gene_scores_obs: vector of approximating the observed gene-wise scores
gene_pvals: vector of associated gene-wise p-values
davies
#rm(list=ls())
set.seed(123)
##generate some fake data
########################
n <- 100
r <- 12
t <- matrix(rep(1:(r/4)), 4, ncol=1, nrow=r)
sigma <- 0.4
b0 <- 1
#under the null:
b1 <- 0
#under the alternative:
#b1 <- 0.5
y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +
      matrix(rep(y.tilde, n), ncol=n, nrow=r))
x <- matrix(1, ncol=1, nrow=r)
#run test
asymTestRes <- vc_test_asym(y, x, phi=cbind(t, t^2), w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
                           Sigma_xi=diag(2), indiv=1:r, genewise_pvals=TRUE)
plot(density(asymTestRes$gene_pvals))
quantile(asymTestRes$gene_pvals)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.