Description Usage Arguments Details Value Reference
MobileNet model architecture.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | application_mobilenet(
input_shape = NULL,
alpha = 1,
depth_multiplier = 1,
dropout = 0.001,
include_top = TRUE,
weights = "imagenet",
input_tensor = NULL,
pooling = NULL,
classes = 1000
)
mobilenet_preprocess_input(x)
mobilenet_decode_predictions(preds, top = 5)
mobilenet_load_model_hdf5(filepath)
|
input_shape |
optional shape list, only to be specified if |
alpha |
controls the width of the network.
|
depth_multiplier |
depth multiplier for depthwise convolution (also called the resolution multiplier) |
dropout |
dropout rate |
include_top |
whether to include the fully-connected layer at the top of the network. |
weights |
|
input_tensor |
optional Keras tensor (i.e. output of |
pooling |
Optional pooling mode for feature extraction when
|
classes |
optional number of classes to classify images into, only to be
specified if |
x |
input tensor, 4D |
preds |
Tensor encoding a batch of predictions. |
top |
integer, how many top-guesses to return. |
filepath |
File path |
The mobilenet_preprocess_input()
function should be used for image
preprocessing. To load a saved instance of a MobileNet model use
the mobilenet_load_model_hdf5()
function. To prepare image input
for MobileNet use mobilenet_preprocess_input()
. To decode
predictions use mobilenet_decode_predictions()
.
application_mobilenet()
and mobilenet_load_model_hdf5()
return a
Keras model instance. mobilenet_preprocess_input()
returns image input
suitable for feeding into a mobilenet model. mobilenet_decode_predictions()
returns a list of data frames with variables class_name
, class_description
,
and score
(one data frame per sample in batch input).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.