Description Usage Arguments Value Note See Also
View source: R/layer-methods.R
A layer config is an object returned from get_config()
that contains the
configuration of a layer or model. The same layer or model can be
reinstantiated later (without its trained weights) from this configuration
using from_config()
. The config does not include connectivity information,
nor the class name (those are handled externally).
1 2 3 | get_config(object)
from_config(config)
|
object |
Layer or model object |
config |
Object with layer or model configuration |
get_config()
returns an object with the configuration,
from_config()
returns a re-instantation of hte object.
Objects returned from get_config()
are not serializable. Therefore,
if you want to save and restore a model across sessions, you can use the
model_to_json()
or model_to_yaml()
functions (for model configuration
only, not weights) or the save_model_hdf5()
function to save the model
configuration and weights to a file.
Other model functions:
compile.keras.engine.training.Model()
,
evaluate.keras.engine.training.Model()
,
evaluate_generator()
,
fit.keras.engine.training.Model()
,
fit_generator()
,
get_layer()
,
keras_model_sequential()
,
keras_model()
,
multi_gpu_model()
,
pop_layer()
,
predict.keras.engine.training.Model()
,
predict_generator()
,
predict_on_batch()
,
predict_proba()
,
summary.keras.engine.training.Model()
,
train_on_batch()
Other layer methods:
count_params()
,
get_input_at()
,
get_weights()
,
reset_states()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.