Description Usage Arguments Details Value Reference Examples
ResNet50 model for Keras.
1 2 3 4 5 6 7 8 |
include_top |
whether to include the fully-connected layer at the top of the network. |
weights |
|
input_tensor |
optional Keras tensor to use as image input for the model. |
input_shape |
optional shape list, only to be specified if |
pooling |
Optional pooling mode for feature extraction when
|
classes |
optional number of classes to classify images into, only to be
specified if |
Optionally loads weights pre-trained on ImageNet.
The imagenet_preprocess_input()
function should be used for image
preprocessing.
A Keras model instance.
- Deep Residual Learning for Image Recognition
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## Not run:
library(keras)
# instantiate the model
model <- application_resnet50(weights = 'imagenet')
# load the image
img_path <- "elephant.jpg"
img <- image_load(img_path, target_size = c(224,224))
x <- image_to_array(img)
# ensure we have a 4d tensor with single element in the batch dimension,
# the preprocess the input for prediction using resnet50
x <- array_reshape(x, c(1, dim(x)))
x <- imagenet_preprocess_input(x)
# make predictions then decode and print them
preds <- model
imagenet_decode_predictions(preds, top = 3)[[1]]
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.