Description Usage Arguments Value Author(s) References
This function implements the Random Covariance Model (RCM) for joint estimation of multiple sparse precision matrices. Optimization is conducted using block coordinate descent.
1 | randCov(x, lambda1, lambda2, lambda3 = 0)
|
x |
List of K data matrices each of dimension n_k x p. |
lambda1 |
Non-negative scalar. Induces sparsity in subject-level matrices. |
lambda2 |
Non-negative scalar. Induces similarity between subject-level matrices and group-level matrix. |
lambda3 |
Non-negative scalar. Induces sparsity in group-level matrix. |
A list of length 2 containing:
Group-level precision matrix estimate (Omega0).
p x p x K array of K subject-level precision matrix estimates (Omegas).
Lin Zhang
Zhang, Lin, Andrew DiLernia, Karina Quevedo, Jazmin Camchong, Kelvin Lim, and Wei Pan. "A Random Covariance Model for Bi-level Graphical Modeling with Application to Resting-state FMRI Data." 2019. https://arxiv.org/pdf/1910.00103.pdf
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.