randCov: Random Covariance Model

Description Usage Arguments Value Author(s) References

View source: R/randCov.R

Description

This function implements the Random Covariance Model (RCM) for joint estimation of multiple sparse precision matrices. Optimization is conducted using block coordinate descent.

Usage

1
randCov(x, lambda1, lambda2, lambda3 = 0)

Arguments

x

List of K data matrices each of dimension n_k x p.

lambda1

Non-negative scalar. Induces sparsity in subject-level matrices.

lambda2

Non-negative scalar. Induces similarity between subject-level matrices and group-level matrix.

lambda3

Non-negative scalar. Induces sparsity in group-level matrix.

Value

A list of length 2 containing:

  1. Group-level precision matrix estimate (Omega0).

  2. p x p x K array of K subject-level precision matrix estimates (Omegas).

Author(s)

Lin Zhang

References

Zhang, Lin, Andrew DiLernia, Karina Quevedo, Jazmin Camchong, Kelvin Lim, and Wei Pan. "A Random Covariance Model for Bi-level Graphical Modeling with Application to Resting-state FMRI Data." 2019. https://arxiv.org/pdf/1910.00103.pdf


dilernia/rcm documentation built on Aug. 11, 2020, 7:29 a.m.