spcov_bcd: Covariance Graphical Lasso

Description Usage Arguments Value References

View source: R/randCov.R

Description

This function implements the Random Covariance Model (RCM) for joint estimation of multiple sparse precision matrices. Optimization is conducted using block coordinate descent.

Usage

1
spcov_bcd(samp_cov, rho, initial = NULL)

Arguments

samp_cov

p x p sample covariance matrix.

rho

Non-negative scalar. Induces sparsity in covariance matrix.

initial

Initial value for covariance matrix.

Value

p x p sparse covariance matrix estimate.

References

Wang, Hao. "Two New Algorithms for Solving Covariance Graphical Lasso Based on Coordinate Descent and ECM." 2012. https://arxiv.org/pdf/1205.4120.pdf


dilernia/rcm documentation built on Aug. 11, 2020, 7:29 a.m.