Description Author(s) References Examples
Described in [1]. The following templates are available:
NormalAgglomeration - theta = 3.2
, virtualVariance = 1.0
AggresiveAgglomeration - theta = 3.5
, virtualVariance = 1.2
RelaxedAgglomeration - theta = 2.9
, virtualVariance = 0.8
Dalibor Krleža
[1] Krleža D, Vrdoljak B, and Brčić M, Statistical hierarchical clustering algorithm for outlier detection in evolving data streams, Machine Learning, Sep. 2020
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | set.seed(0)
d <- DSD_Gaussians(k = 3, d = 2, outliers = 5, separation_type = "Mahalanobis",
separation = 6, space_limit = c(0, 50), variance_limit = 2,
outlier_options = list(outlier_horizon = 10000,outlier_virtual_variance = 2))
c <- DSC_SHC.behavioral(2, aggloType = AgglomerationType$AggresiveAgglomeration, decaySpeed = 0,
sigmaIndex = TRUE)
evaluate(c, d, n = 10000, type = "macro", measure = c("crand", "outlierjaccard"))
set.seed(0)
d <- DSD_Gaussians(k = 3, d = 2, outliers = 5, separation_type = "Mahalanobis",
separation = 6, space_limit = c(0, 50), variance_limit = 2,
outlier_options = list(outlier_horizon = 10000,outlier_virtual_variance = 2))
c <- DSC_SHC.behavioral(2, aggloType = AgglomerationType$RelaxedAgglomeration, decaySpeed = 0,
sigmaIndex = TRUE)
evaluate(c, d, n = 10000, type = "macro", measure = c("crand", "outlierjaccard"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.