GLDfkml: Generalized Lambda Distribution (GLD) FKML parameterization

qGLDfkmlR Documentation

Generalized Lambda Distribution (GLD) FKML parameterization

Description

Quantile function, quantile density, density quantile and inverse quantile functions for GLD distribution with FKML parameterization. aGLDfkml_mean and aGLDfkml_median are theoretical mean and median, which can be used for adjusting the quantile likelihood.

Usage

qGLDfkml(u, l1, l2, l3, l4)

fGLDfkml(u, l1, l2, l3, l4)

dqGLDfkml(u, l1, l2, l3, l4, log = FALSE)

rGLDfkml(n, l1, l2, l3, l4)

pGLDfkml(q, ..., lower = 0, upper = 1, tol = 1e-06, silent = TRUE, trace = 0)

is_GLDfkml_valid(l1, l2, l3, l4)

aGLDfkml_mean(l1, l2, l3, l4)

aGLDfkml_median(l1, l2, l3, l4)

Arguments

u

numeric vector of probabilities

l1

GLD parameter \lambda_1, (FKML parameterization)

l2

GLD parameter \lambda_2, (FKML parameterization)

l3

GLD parameter \lambda_3, (FKML parameterization)

l4

GLD parameter \lambda_4, (FKML parameterization)

log

should the log density be returned. Default=FALSE

n

numeric number of samples to draw

q

vector of quantiles

...

used by method

lower, upper

the stats::uniroot lower and upper end points of the interval to be searched. Defaults are 0 and 1, respectively

tol

the stats::uniroot desired accuracy (convergence tolerance). Default value 1e-06

silent

the base::try argument. Default is TRUE

trace

integer number passed to stats::uniroot; if positive, tracing information is produced. Higher values giving more details.

Value

quantiles, QDF, DQF, random samples or probabilities of GLD (FKML parameterization)

Examples

p_grd <- make_pgrid()
qGLDfkml(p_grd, 1, 1, -1/8, -1/32)

dmi3kno/qpd documentation built on Sept. 29, 2024, 6:39 p.m.