qGLDrs | R Documentation |
Quantile function, quantile density, density quantile and inverse quantile
functions for GLD distribution with RS parameterization.
aGLDrs_mean
and aGLDrs_median
are theoretical mean and median, which can be used
for adjusting the quantile likelihood.
qGLDrs(u, l1, l2, l3, l4)
fGLDrs(u, l1, l2, l3, l4)
dqGLDrs(u, l1, l2, l3, l4, log = FALSE)
rGLDrs(n, l1, l2, l3, l4)
pGLDrs(q, ..., lower = 0, upper = 1, tol = 1e-06, silent = TRUE, trace = 0)
is_GLDrs_valid(l1, l2, l3, l4)
aGLDrs_mean(l1, l2, l3, l4)
aGLDrs_median(l1, l2, l3, l4)
u |
numeric vector of probabilities |
l1 |
GLD parameter |
l2 |
GLD parameter |
l3 |
GLD parameter |
l4 |
GLD parameter |
log |
should the log density be returned. Default=FALSE |
n |
numeric number of samples to draw |
q |
vector of quantiles |
... |
used by method |
lower , upper |
the |
tol |
the |
silent |
the |
trace |
integer number passed to |
quantiles, QDF, DQF, random samples or probabilities of GLD
p_grd <- make_pgrid()
is_GLDrs_valid(1, -1, -1/8, -1/32)
qGLDrs(p_grd, 1, -1, -1/8, -1/32)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.