fld: Flattened Logistic Distribution (FLD)

fldR Documentation

Flattened Logistic Distribution (FLD)

Description

Defines quantile function (ICDF), probability density and quantile density function as well as probability function (CDF) for flattened logistic distribution

Usage

qfld(p, bt, k, a = 0)

ffld(p, bt, k, a = 0)

dqfld(p, bt, k, a = 0, log = FALSE)

rfld(n, bt, k, a = 0)

pfld(q, ..., lower = 0, upper = 1, tol = 1e-06, silent = TRUE, trace = 0)

Arguments

p

vector of probabilities

bt

parameter beta of GFLD distribution (scale). Should be non-negative.

k

parameter k of GFLD distribution (shape). Should be non-negative.

a

location parameter alpha of GFLD distribution(location parameter), default is 0

log

logical; if TRUE, log density is returnes. Default is FALSE

n

numeric; number of samples to draw from FLD distribution

q

vector of quantiles

...

used by method

lower, upper

the stats::uniroot lower and upper end points of the interval to be searched. Defaults are 0 and 1, respectively

tol

the stats::uniroot desired accuracy (convergence tolerance). Default value 1e-06

silent

the base::try argument. Default is TRUE

trace

integer number passed to stats::uniroot; if positive, tracing information is produced. Higher values giving more details.

Value

vector

Examples

qfld(0.1, 0.5, 0.3, 0.5)
# centered gfld
p <- runif(1e4)
x <- qfld(p, 0.25, 1)-qfld(0.5, 0.25, 1)
hist(x,30)

dmi3kno/qpd documentation built on Sept. 29, 2024, 6:39 p.m.