smk_net <- set_agd_arm(smoking,
study = studyn,
trt = trtc,
r = r,
n = n,
trt_ref = "No intervention")
# Only test gradients, no sampling
smk_fit_RE <- nma(smk_net,
trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = normal(scale = 5),
test_grad = TRUE)
test_that("probs argument", {
m <- "numeric vector of probabilities"
expect_error(posterior_ranks(smk_fit_RE, probs = "a"), m)
expect_error(posterior_ranks(smk_fit_RE, probs = -1), m)
expect_error(posterior_ranks(smk_fit_RE, probs = 1.5), m)
expect_error(posterior_ranks(smk_fit_RE, probs = Inf), m)
expect_error(posterior_ranks(smk_fit_RE, probs = list()), m)
expect_error(posterior_ranks(smk_fit_RE, probs = NA), m)
expect_error(posterior_ranks(smk_fit_RE, probs = NULL), m)
})
test_that("summary argument", {
m <- "should be TRUE or FALSE"
expect_error(posterior_ranks(smk_fit_RE, summary = "a"), m)
expect_error(posterior_ranks(smk_fit_RE, summary = 1), m)
expect_error(posterior_ranks(smk_fit_RE, summary = list()), m)
expect_error(posterior_ranks(smk_fit_RE, summary = NA), m)
expect_error(posterior_ranks(smk_fit_RE, summary = NULL), m)
})
test_that("sucra argument", {
m <- "should be TRUE or FALSE"
expect_error(posterior_ranks(smk_fit_RE, sucra = "a"), m)
expect_error(posterior_ranks(smk_fit_RE, sucra = 1), m)
expect_error(posterior_ranks(smk_fit_RE, sucra = list()), m)
expect_error(posterior_ranks(smk_fit_RE, sucra = NA), m)
expect_error(posterior_ranks(smk_fit_RE, sucra = NULL), m)
})
test_that("newdata argument", {
m <- "not a data frame"
expect_error(posterior_ranks(smk_fit_RE, newdata = "a"), m)
expect_error(posterior_ranks(smk_fit_RE, newdata = 1), m)
expect_error(posterior_ranks(smk_fit_RE, newdata = list()), m)
expect_error(posterior_ranks(smk_fit_RE, newdata = NA), m)
})
test_that("lower_better argument", {
m <- "should be TRUE or FALSE"
expect_error(posterior_ranks(smk_fit_RE, lower_better = "a"), m)
expect_error(posterior_ranks(smk_fit_RE, lower_better = 1), m)
expect_error(posterior_ranks(smk_fit_RE, lower_better = list()), m)
expect_error(posterior_ranks(smk_fit_RE, lower_better = NA), m)
expect_error(posterior_ranks(smk_fit_RE, lower_better = NULL), m)
})
test_that("newdata argument", {
m <- "not a data frame"
expect_error(posterior_rank_probs(smk_fit_RE, newdata = "a"), m)
expect_error(posterior_rank_probs(smk_fit_RE, newdata = 1), m)
expect_error(posterior_rank_probs(smk_fit_RE, newdata = list()), m)
expect_error(posterior_rank_probs(smk_fit_RE, newdata = NA), m)
})
test_that("lower_better argument", {
m <- "should be TRUE or FALSE"
expect_error(posterior_rank_probs(smk_fit_RE, lower_better = "a"), m)
expect_error(posterior_rank_probs(smk_fit_RE, lower_better = 1), m)
expect_error(posterior_rank_probs(smk_fit_RE, lower_better = list()), m)
expect_error(posterior_rank_probs(smk_fit_RE, lower_better = NA), m)
expect_error(posterior_rank_probs(smk_fit_RE, lower_better = NULL), m)
})
test_that("cumulative argument", {
m <- "should be TRUE or FALSE"
expect_error(posterior_rank_probs(smk_fit_RE, cumulative = "a"), m)
expect_error(posterior_rank_probs(smk_fit_RE, cumulative = 1), m)
expect_error(posterior_rank_probs(smk_fit_RE, cumulative = list()), m)
expect_error(posterior_rank_probs(smk_fit_RE, cumulative = NA), m)
expect_error(posterior_rank_probs(smk_fit_RE, cumulative = NULL), m)
})
test_that("sucra argument", {
m <- "should be TRUE or FALSE"
expect_error(posterior_rank_probs(smk_fit_RE, sucra = "a"), m)
expect_error(posterior_rank_probs(smk_fit_RE, sucra = 1), m)
expect_error(posterior_rank_probs(smk_fit_RE, sucra = list()), m)
expect_error(posterior_rank_probs(smk_fit_RE, sucra = NA), m)
expect_error(posterior_rank_probs(smk_fit_RE, sucra = NULL), m)
})
skip_on_cran() # Reduce CRAN check time
# Only small number of samples to test
smk_fit_RE <- suppressWarnings(nma(smk_net,
trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = normal(scale = 5),
iter = 10))
test_that(".trt column is correct", {
rk <- tibble::as_tibble(posterior_ranks(smk_fit_RE))
expect_identical(paste0("rank[", rk$.trt, "]"),
rk$parameter)
rp <- tibble::as_tibble(posterior_rank_probs(smk_fit_RE))
expect_identical(paste0("d[", rp$.trt, "]"),
rp$parameter)
})
pso_net <- set_ipd(plaque_psoriasis_ipd[complete.cases(plaque_psoriasis_ipd), ],
studyc, trtc,
r = pasi75)
# Only small number of samples to test
pso_fit <- suppressWarnings(nma(pso_net,
trt_effects = "fixed",
regression = ~(durnpso + prevsys + bsa + weight + psa)*.trt,
prior_intercept = normal(scale = 10),
prior_trt = normal(scale = 10),
prior_reg = normal(scale = 10),
init_r = 0.1,
iter = 10))
test_that(".study, .trt columns are correct", {
rk <- tibble::as_tibble(posterior_ranks(pso_fit))
expect_identical(paste0("rank[", rk$.study, ": ", rk$.trt, "]"),
rk$parameter)
rp <- tibble::as_tibble(posterior_rank_probs(pso_fit))
expect_identical(paste0("d[", rp$.study, ": ", rp$.trt, "]"),
rp$parameter)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.