R/predict.sven.R

Defines functions predict.sven

Documented in predict.sven

#' Make predictions from a fitted "sven" object.
#' @rdname predict.sven
#' @description This function makes point predictions and computes prediction intervals
#' from a fitted "sven" object.
#' @param object A fitted "sven" object
#' @param newdata Matrix of new values for \code{X} at which predictions are to be made. Must be a matrix;
#' can be sparse as in Matrix package.
#' @param model The model to be used to make predictions. Model "MAP" gives the predictions calculated
#' using the MAP model; model "WAM" gives the predictions calculated using the WAM. Default: "WAM".
#' @param interval Type of interval calculation. If \code{interval} = \code{"none"}, only point predictions are returned;
#' if \code{interval} = \code{"MC"}, Monte Carlo prediction intervals are returned; if \code{interval} = \code{"Z"}, Z prediction 
#' intervals are returned. 
#' @param Nsim only required if \code{interval} = \code{"MC"}. The Monte Carlo sample size. Default: 10000.
#' @param return.draws only required if \code{interval} = \code{"MC"}. if \code{TRUE}, the Monte Carlo samples are returned.
#' Default: \code{FALSE}.
#' @param level Confidence level of the interval. Default: 0.95.
#' @param alpha Type one error rate. Default: 1-\code{level}.
#' @param ... Further arguments passed to or from other methods.
#' 
#' 
#' @return The object returned depends on "interval" argument. If \code{interval} = \code{"none"}, the object is an 
#' \eqn{\code{ncol(newdata)}\times 1} vector of the point predictions; otherwise, the object is an
#' \eqn{\code{ncol(newdata)}\times 3} matrix with the point predictions in the first column and the lower and upper bounds 
#' of prediction intervals in the second and third columns, respectively.
#' 
#' if return.draws is \code{TRUE}, a list with the following components is returned:
#' \item{prediction}{vector or matrix as above}
#' \item{mc.draws}{an \eqn{\code{ncol(newdata)} \times \code{Nsim}} matrix of the Monte Carlo samples}
#' 
#' @author Dongjin Li and Somak Dutta\cr Maintainer:
#' Dongjin Li <dongjl@@iastate.edu>
#' @references Li, D., Dutta, S., Roy, V.(2020) Model Based Screening Embedded Bayesian Variable Selection for Ultra-high 
#' Dimensional Settings http://arxiv.org/abs/2006.07561
#' @examples
#' n = 80; p = 100; nonzero = 5
#' trueidx <- 1:5
#' nonzero.value <- c(0.50, 0.75, 1.00, 1.25, 1.50)
#' TrueBeta = numeric(p)
#' TrueBeta[trueidx] <- nonzero.value
#'
#' X <- matrix(rnorm(n*p), n, p)
#' y <- 0.5 + X %*% TrueBeta + rnorm(n)
#' res <- sven(X=X, y=y)
#' newx <- matrix(rnorm(20*p), 20, p)
#' # predicted values at a new data matrix using MAP model
#' yhat <- predict(object = res, newdata = newx, model = "MAP", interval = "none")
#' # 95% Monte Carlo prediction interval using WAM
#' MC.interval <- predict(object = res, model = "WAM", newdata = newx, interval = "MC", level=0.95)
#' # 95% Z-prediction interval using MAP model
#' Z.interval <- predict(object = res, model = "MAP", newdata = newx, interval = "Z", level = 0.95)
#' @method predict sven
#' @export
#' @export predict.sven

predict.sven <- function(object, newdata, model = c("WAM", "MAP"), interval = c("none", "MC", "Z"),
                         return.draws = FALSE, Nsim = 10000, level = 0.95, alpha = 1-level, ...) {
  if (alpha < 0 | alpha > 1) {
    stop("alpha has to be between 0 and 1")
  }
  if (level < 0 | level > 1) {
    stop("level has to be between 0 and 1")
  }
  interval <- match.arg(interval)
  model <- match.arg(model)
  y.pred <- predPoint(object = object, Xnew = newdata, model = model)
  if (interval == "none"){
    return(y.pred)
  } else {
    intv <- predIntv(object = object, model = model, Xnew = newdata, interval = interval, Nsim = Nsim,
                     return.draws = return.draws, conf.level = level, alpha = alpha)
    if (return.draws){
      prediction <- cbind(y.pred, intv$ci)
      colnames(prediction) <- c("y.pred", colnames(intv$ci))
      return(list(prediction = prediction, mc.draws = intv$mc.draws))
    } else {
      prediction <- cbind(y.pred, intv)
      colnames(prediction) <- c("y.pred", colnames(intv))
      return(prediction)
    }
  }
}
dongjli/bravo documentation built on Sept. 20, 2021, 3:33 a.m.