encoder_in_out: Input and output tensors of encoders

Description Usage Arguments Value Author(s) See Also Examples

Description

The graph convolutional network (GCN), recurrent neural network (RNN), convolutional neural network (CNN), and multilayer perceptron (MLP) are used as encoders. The last layer of the encoders is the fully connected layer. The units and activation can be vectors and the length of the vectors represents the number of layers.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
gcn_in_out(max_atoms, feature_dim, gcn_units, gcn_activation,
    fc_units, fc_activation)

rnn_in_out(length_seq, fingerprint_size, embedding_layer = TRUE,
    num_tokens, embedding_dim, rnn_type, rnn_bidirectional,
    rnn_units, rnn_activation, fc_units, fc_activation)

cnn_in_out(length_seq, fingerprint_size, embedding_layer = TRUE,
    num_tokens, embedding_dim, cnn_filters, cnn_kernel_size, cnn_activation,
    fc_units, fc_activation)

mlp_in_out(length_seq, fingerprint_size, embedding_layer = TRUE,
    num_tokens, embedding_dim, fc_units, fc_activation)

Arguments

max_atoms

maximum number of atoms for gcn

feature_dim

dimension of atom features for gcn

gcn_units

dimensionality of the output space in the gcn layer

gcn_activation

activation of the gcn layer

fingerprint_size

the length of a fingerprint

embedding_layer

use the embedding layer if TRUE (default: TRUE)

embedding_dim

a non-negative integer for dimension of the dense embedding

length_seq

length of input sequences

num_tokens

total number of distinct strings

cnn_filters

dimensionality of the output space in the cnn layer

cnn_kernel_size

length of the 1D convolution window in the cnn layer

cnn_activation

activation of the cnn layer

rnn_type

"lstm" or "gru"

rnn_bidirectional

use the bidirectional wrapper for rnn if TRUE

rnn_units

dimensionality of the output space in the rnn layer

rnn_activation

activation of the rnn layer

fc_units

dimensionality of the output space in the fully connected layer

fc_activation

activation of the fully connected layer

Value

input and output tensors of encoders

Author(s)

Dongmin Jung

See Also

keras::layer_activation, keras::bidirectional, keras::layer_conv_1d, keras::layer_dense, keras::layer_dot, keras::layer_embedding, keras::layer_global_average_pooling_1d, keras::layer_input, keras::layer_lstm, keras::layer_gru, keras::layer_flatten

Examples

1
2
3
4
5
6
gcn_in_out(max_atoms = 50,
    feature_dim = 50,
    gcn_units = c(128, 64),
    gcn_activation = c("relu", "relu"),
    fc_units = c(10),
    fc_activation = c("relu"))

dongminjung/DeepPINCS documentation built on Dec. 20, 2021, 12:13 a.m.