Description Author(s) References See Also Examples
The F1-score is a metric combining precision and recall. It is typically used instead of accuracy in the case of severe class imbalance in the dataset. The higher the values of F1-score, the better the validation of the model.
Dongmin Jung
Kubben, P., Dumontier, M., & Dekker, A. (2019). Fundamentals of clinical data science. Springer.
Mishra, A., Suseendran, G., & Phung, T. N. (Eds.). (2020). Soft Computing Applications and Techniques in Healthcare. CRC Press.
keras::k_equal, keras::k_sum, tensorflow::tf
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | compound_length_seq <- 50
compound_embedding_dim <- 16
protein_embedding_dim <- 16
protein_length_seq <- 100
mlp_cnn_cpi <- fit_cpi(
smiles = example_cpi[1:100, 1],
AAseq = example_cpi[1:100, 2],
outcome = example_cpi[1:100, 3],
compound_type = "sequence",
compound_length_seq = compound_length_seq,
compound_embedding_dim = compound_embedding_dim,
protein_length_seq = protein_length_seq,
protein_embedding_dim = protein_embedding_dim,
net_args = list(
compound = "mlp_in_out",
compound_args = list(
fc_units = c(10),
fc_activation = c("relu")),
protein = "cnn_in_out",
protein_args = list(
cnn_filters = c(32),
cnn_kernel_size = c(3),
cnn_activation = c("relu"),
fc_units = c(10),
fc_activation = c("relu")),
fc_units = c(1),
fc_activation = c("sigmoid"),
loss = "binary_crossentropy",
optimizer = keras::optimizer_adam(),
metrics = custom_metric("F1_score",
metric_f1_score)),
epochs = 2,
batch_size = 16)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.