R/SMOTE.R

Defines functions SMOTE

Documented in SMOTE

##' A balanced dataset would be return by using Synthetic Minority Over-sampling
##' TEchnique (SMOTE) algorithm.
##'
##' The synthetic minority over-sampling technique artificially generates new samples
##' of the minority class using the nearest neighbours of these cases, in order to get a
##' more balanced dataset.
##'
##' @title Synthetic Minority Over-sampling TEchnique
##' @param data A dataset containing the predictors and the outcome. The predictors
##' can only be continuous (\code{numeric} or \code{integer}). The outcome must be binary.
##' @param outcome The column number or the name of the outcome variable in the dataset.
##' @param perc_maj The desired percentage of the size of majority samples that the
##' minority samples would be reached in the new dataset. The default is 100.
##' @param k The number of nearest neighbours that are used to generate the new samples
##' of the minority class. The default is 5.
##' @return A new dataset has been balanced.
##' @references Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002).
##' SMOTE: synthetic minority over-sampling technique. \emph{Journal of artificial
##' intelligence research}, 16, 321-357.
##' @import stats FNN
##' @export
##' @examples
##' data(abalone)
##' table(abalone$Class)
##'
##' newdata1 <- SMOTE(abalone, 'Class')
##' table(newdata1$Class)
##'
##' newdata2 <- SMOTE(abalone, 'Class', perc_maj=50)
##' table(newdata2$Class)



SMOTE <- function(data, outcome, perc_maj = 100, k = 5) {
    datnrow <- nrow(data)
    if (nrow(na.omit(data)) < datnrow) {
        stop("Sorry, this dataset has missing value :(")
    }
    if (is.character(outcome)) {
        if (!(outcome %in% colnames(data))) {
            stop(paste("This dataset doesn't have a variable names", outcome))
        } else {
            y_coln <- outcome
            y_ind <- which(outcome == colnames(data))
        }
    } else {
        if (outcome < 1 | outcome > ncol(data)) {
            stop(paste("This dataset doesn't have a variable whose column number is", outcome))
        } else {
            y_coln <- colnames(data)[outcome]
            y_ind <- outcome
        }
    }
    y <- data[, outcome]

    if (length(table(y)) != 2) {
        stop("Sorry, the outcome is not binary, I can't solve this problem :(")
    }
    if (table(y)[1] == table(y)[2]) {
        stop("Sorry, this dataset has been balanced and there is nothing I can do.")
    }
    if (!inherits(y, "character") & !inherits(y, "factor")) {
        warning("The outcome is a binary variable, but not a factor or character.")
    }

    x_cl <- sapply(data[, -y_ind], class)
    if (all(x_cl == "numeric" | x_cl == "integer")) {
        message("All variables are continuous, SMOTE could be used.")

    } else if (all(x_cl == "character" | x_cl == "factor")) {
        stop("All variables are categorical, I can't solve this problem :(
             Maybe you can try to make one hot coding for each variable.")

    } else if ((("character" %in% x_cl) | ("factor" %in% x_cl)) & (("numeric" %in% x_cl) | ("integer" %in% x_cl))) {
        stop("Variables are continous and categorical, please use SMOTE_NC function.")

    } else {
        stop("The types of variables need to be numeric or integer.
             Please check your dataset again.")
    }

    min_cl_char <- names(table(y))[which.min(table(y))]
    min_cl <- unique(y[y == min_cl_char])

    min_ind <- which(y == min_cl)
    maj_ind <- which(y != min_cl)

    x_min <- data[min_ind, -y_ind]
    x_coln <- colnames(x_min)
    knn_result <- get.knn(x_min, k = k)
    knn_ind <- knn_result$nn.index
    knn_dist <- knn_result$nn.dist

    syn_size <- get_syn_size(perc_maj, maj_len = length(maj_ind), min_len = length(min_ind))

    new_min <- NULL
    for (i in 1:nrow(x_min)) {
        replacement <- ifelse(syn_size[i] >= k, TRUE, FALSE)
        ind <- sample(knn_ind[i, ], syn_size[i], replace = replacement)
        if (syn_size[i] == 0)
            next
        temp <- apply(x_min[ind, ], 1, function(x) x_min[i, ] + runif(syn_size[i], 0, 1) * (x - x_min[i, ]))
        temp <- matrix(unlist(temp), ncol = ncol(x_min), byrow = TRUE)
        new_min <- rbind(new_min, temp)
    }

    new_min <- as.data.frame(new_min)
    colnames(new_min) <- x_coln
    new_min[, y_coln] <- min_cl
    new_min <- new_min[, colnames(data)]
    newdata <- rbind(data, new_min)

    return(newdata)
}
dongyuanwu/RSBID documentation built on May 20, 2024, 7:53 a.m.