Description Usage Arguments Details Value Author(s) References Examples
The JC69 model on a pairwise sequence alignment
1 2 3 4 5 | jc69.2smle(x, n)
jc69.2slnL(d, x, n)
jc69.2slnP(d, x, n, shape, rate, C = 1)
|
x |
numeric, the number of differences in the alignment |
n |
numeric, the number of sites in the alignment |
d |
numeric, the molecular distance |
shape |
numeric, the shape of the gamma prior on d |
rate |
numeric, the rate of the gamma prior on d |
C |
numeric, a scaling constant |
jc692s.mle
calulates the MLE of d. jc69.2slnL
computes
the log-likelihood and jc69.2slnP
computes the log-posterior
assuming a gamma prior on d
.
jc69.2slnL
and jc69.2slnP
return vectors of
log-likelihood and log-posterior values respectively.
Mario dos Reis
Yang Z (2014) Molecular evolution: A Statistical approach, Oxford University Press.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | data(humanorang)
par(mfrow=c(1,2))
# Plot the likelihood:
curve(exp(jc69.2slnL(x, x=humanorang$x, n=humanorang$n)),
n=5e2, from=0, to=0.2, ylab="Likelihood", xlab="Molecular distance (d)")
abline(v=jc69.2smle(x=humanorang$x, n=humanorang$n), col="red", lty=2)
# Plot the posterior:
curve(exp(jc69.2slnP(x, x=humanorang$x, n=humanorang$n, shape=1, rate=5)),
n=5e2, from=0, to=0.2, ylab="Posterior", xlab="Molecular distance (d)")
# Does not integrate to one:
integrate(function(x) exp(jc69.2slnP(x, x=humanorang$x, n=humanorang$n,
shape=1, rate=5)), lower=0, upper=Inf, abs.tol=0)
# Integrates to one:
integrate(function(x) exp(jc69.2slnP(x, x=humanorang$x, n=humanorang$n,
shape=1, rate=5, C=1/5.167762e-131)), lower=0, upper=Inf, abs.tol=0)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.