Semseeker aims to identify all variants that are enriched and localized in methylation.
To install semseeker, you can use devtools; upcoming releases will be accessible via CRAN.
Install the latest release:
install.packages("devtools")
library("devtools")
install_github("drake69/semseeker")
This basic example demonstrates the process of creating a methylation matrix for beta values that can be utilized in calculations using ChAMP:
library(ChAMP)
idat_folder <- "~/source_idat/"
result_folder = "~/result/"
myLoadN <- champ.load(directory = idat_folder,
method = "minfi",
methValue="B",
autoimpute=TRUE,
filterDetP=TRUE,
ProbeCutoff=0,
SampleCutoff=0.1,
detPcut=0.01,
filterBeads=TRUE,
beadCutoff=0.05,
filterNoCG=TRUE,
filterSNPs=TRUE,
population=NULL,
filterMultiHit=TRUE,
filterXY=TRUE,
force=FALSE,
arraytype="450K")
# normalize with ChAMP
myNormN<-champ.norm(beta=myLoadN$beta,
rgSet=myLoadN$rgSet,
mset=myLoadN$mset,
resultsDir= result_folder,
method="SWAN",
plotBMIQ=FALSE,
arraytype="450K",
cores= detectCores(all.tests = FALSE, logical = TRUE) - 1
)
saveRDS(myNormN,"~/normalizedData.rds")
Here’s how you can obtain the analyzed data:
library(semseeker)
normalizedData <- readRDS("~/normalizedData.rds")
sample_sheet <- read.csv2("~/sample_sheet.csv")
semseeker (sample_sheet = sample_sheet,
methylation_data = normalizedData,
result_folder = "~/semseeker_result/")
You can find a complete and functional example, which includes data from Gene Expression Omnibus (GEO), by examining the repository’s “example” folder.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.