ZinbModel-class | R Documentation |
Objects of this class store all the values needed to work with a zero-inflated negative binomial (ZINB) model, as described in the vignette. They contain all information to fit a model by penalized maximum likelihood or simulate data from a model.
## S4 method for signature 'ZinbModel'
show(object)
## S4 method for signature 'ZinbModel'
nSamples(x)
## S4 method for signature 'ZinbModel'
nFeatures(x)
## S4 method for signature 'ZinbModel'
nFactors(x)
## S4 method for signature 'ZinbModel'
getX_mu(object, intercept = TRUE)
## S4 method for signature 'ZinbModel'
getX_pi(object, intercept = TRUE)
## S4 method for signature 'ZinbModel'
getV_mu(object, intercept = TRUE)
## S4 method for signature 'ZinbModel'
getV_pi(object, intercept = TRUE)
## S4 method for signature 'ZinbModel'
getLogMu(object)
## S4 method for signature 'ZinbModel'
getMu(object)
## S4 method for signature 'ZinbModel'
getLogitPi(object)
## S4 method for signature 'ZinbModel'
getPi(object)
## S4 method for signature 'ZinbModel'
getZeta(object)
## S4 method for signature 'ZinbModel'
getPhi(object)
## S4 method for signature 'ZinbModel'
getTheta(object)
## S4 method for signature 'ZinbModel'
getEpsilon_beta_mu(object)
## S4 method for signature 'ZinbModel'
getEpsilon_gamma_mu(object)
## S4 method for signature 'ZinbModel'
getEpsilon_beta_pi(object)
## S4 method for signature 'ZinbModel'
getEpsilon_gamma_pi(object)
## S4 method for signature 'ZinbModel'
getEpsilon_W(object)
## S4 method for signature 'ZinbModel'
getEpsilon_alpha(object)
## S4 method for signature 'ZinbModel'
getEpsilon_zeta(object)
## S4 method for signature 'ZinbModel'
getW(object)
## S4 method for signature 'ZinbModel'
getBeta_mu(object)
## S4 method for signature 'ZinbModel'
getBeta_pi(object)
## S4 method for signature 'ZinbModel'
getGamma_mu(object)
## S4 method for signature 'ZinbModel'
getGamma_pi(object)
## S4 method for signature 'ZinbModel'
getAlpha_mu(object)
## S4 method for signature 'ZinbModel'
getAlpha_pi(object)
object |
an object of class |
x |
an object of class |
intercept |
logical. Whether to return the intercept (ignored if the
design matrix has no intercept). Default |
For the full description of the model see the model vignette.
Internally, the slots are checked so that the matrices are of the
appropriate dimensions: in particular, X
, O_mu
, O_pi
,
and W
need to have n
rows, V
needs to have J
rows, zeta
must be of length J
.
nSamples
returns the number of samples; nFeatures
returns the number of features; nFactors
returns the number of latent
factors.
show(ZinbModel)
: show useful info on the object.
nSamples(ZinbModel)
: returns the number of samples.
nFeatures(ZinbModel)
: returns the number of features.
nFactors(ZinbModel)
: returns the number of latent factors.
getX_mu(ZinbModel)
: returns the sample-level design matrix for mu.
getX_pi(ZinbModel)
: returns the sample-level design matrix for pi.
getV_mu(ZinbModel)
: returns the gene-level design matrix for mu.
getV_pi(ZinbModel)
: returns the sample-level design matrix for pi.
getLogMu(ZinbModel)
: returns the logarithm of the mean of the non-zero
component.
getMu(ZinbModel)
: returns the mean of the non-zero component.
getLogitPi(ZinbModel)
: returns the logit-probability of zero.
getPi(ZinbModel)
: returns the probability of zero.
getZeta(ZinbModel)
: returns the log of the inverse of the dispersion
parameter.
getPhi(ZinbModel)
: returns the dispersion parameter.
getTheta(ZinbModel)
: returns the inverse of the dispersion parameter.
getEpsilon_beta_mu(ZinbModel)
: returns the regularization parameters for
beta_mu
.
getEpsilon_gamma_mu(ZinbModel)
: returns the regularization parameters for
gamma_mu
.
getEpsilon_beta_pi(ZinbModel)
: returns the regularization parameters for
beta_pi
.
getEpsilon_gamma_pi(ZinbModel)
: returns the regularization parameters for
gamma_pi
.
getEpsilon_W(ZinbModel)
: returns the regularization parameters for
W
.
getEpsilon_alpha(ZinbModel)
: returns the regularization parameters for
alpha
.
getEpsilon_zeta(ZinbModel)
: returns the regularization parameters for
zeta
.
getW(ZinbModel)
: returns the matrix W of inferred sample-level
covariates.
getBeta_mu(ZinbModel)
: returns the matrix beta_mu of inferred parameters.
getBeta_pi(ZinbModel)
: returns the matrix beta_pi of inferred parameters.
getGamma_mu(ZinbModel)
: returns the matrix gamma_mu of inferred parameters.
getGamma_pi(ZinbModel)
: returns the matrix gamma_pi of inferred parameters.
getAlpha_mu(ZinbModel)
: returns the matrix alpha_mu of inferred parameters.
getAlpha_pi(ZinbModel)
: returns the matrix alpha_pi of inferred parameters.
X
matrix. The design matrix containing sample-level covariates, one sample per row.
V
matrix. The design matrix containing gene-level covariates, one gene per row.
O_mu
matrix. The offset matrix for mu.
O_pi
matrix. The offset matrix for pi.
which_X_mu
integer. Indeces of which columns of X to use in the regression of mu.
which_V_mu
integer. Indeces of which columns of V to use in the regression of mu.
which_X_pi
integer. Indeces of which columns of X to use in the regression of pi.
which_V_pi
integer. Indeces of which columns of V to use in the regression of pi.
X_mu_intercept
logical. TRUE if X_mu contains an intercept.
X_pi_intercept
logical. TRUE if X_pi contains an intercept.
V_mu_intercept
logical. TRUE if V_mu contains an intercept.
V_pi_intercept
logical. TRUE if V_pi contains an intercept.
W
matrix. The factors of sample-level latent factors.
beta_mu
matrix or NULL. The coefficients of X in the regression of mu.
gamma_mu
matrix or NULL. The coefficients of V in the regression of mu.
alpha_mu
matrix or NULL. The coefficients of W in the regression of mu.
beta_pi
matrix or NULL. The coefficients of X in the regression of pi.
gamma_pi
matrix or NULL. The coefficients of V in the regression of pi.
alpha_pi
matrix or NULL. The coefficients of W in the regression of pi.
zeta
numeric. A vector of log of inverse dispersion parameters.
epsilon_beta_mu
nonnegative scalar. Regularization parameter for beta_mu
epsilon_gamma_mu
nonnegative scalar. Regularization parameter for gamma_mu
epsilon_beta_pi
nonnegative scalar. Regularization parameter for beta_pi
epsilon_gamma_pi
nonnegative scalar. Regularization parameter for gamma_pi
epsilon_W
nonnegative scalar. Regularization parameter for W
epsilon_alpha
nonnegative scalar. Regularization parameter for alpha (both alpha_mu and alpha_pi)
epsilon_zeta
nonnegative scalar. Regularization parameter for zeta
epsilon_min_logit
scalar. Minimum regularization parameter for parameters of the logit model, including the intercept.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.