Description Usage Arguments Details Value Author(s) References See Also Examples
Quick version of NetGSA
1 2 3 |
x |
See |
group |
See |
pathways |
See |
lambda_c |
See |
file_e |
See |
file_ne |
See |
lklMethod |
See |
cluster |
See |
sampling |
See |
sample_n |
See |
sample_p |
See |
minsize |
See |
eta |
See |
lim4kappa |
See |
This is a wrapper function to perform weighted adjacency matrix estimation and pathway enrichment in one step. For more details see ?prepareAdjMat
and ?NetGSA
.
A list with components
results |
A data frame with pathway names, pathway sizes, p-values and false discovery rate corrected q-values, and test statistic for all pathways. |
beta |
Vector of fixed effects of length kp, the first k elements corresponds to condition 1, the second k to condition 2, etc. |
s2.epsilon |
Variance of the random errors ε. |
s2.gamma |
Variance of the random effects γ. |
graph |
List of components needed in |
Michael Hellstern
Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with incomplete network information. Bioinformatics 32(20):165–3174. https://doi.org/10.1093/bioinformatics/btw410
Shojaie, A., & Michailidis, G. (2010). Network enrichment analysis in complex experiments. Statistical applications in genetics and molecular biology, 9(1), Article 22. http://www.ncbi.nlm.nih.gov/pubmed/20597848.
Shojaie, A., & Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory network. Journal of Computational Biology, 16(3), 407-426. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131840/
prepareAdjMat
, netEst.dir
, netEst.undir
1 2 3 4 5 6 7 8 | ## load the data
data("breastcancer2012")
## consider genes from the "ErbB signaling pathway" and "Jak-STAT signaling pathway"
genenames <- unique(c(pathways[[24]], pathways[[52]]))
sx <- x[match(rownames(x), genenames, nomatch = 0L) > 0L,]
out_clusterq <- NetGSAq(sx, group, pathways_mat[c(24, 52), rownames(sx)])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.