Man pages for drkowal/rSTAR
MCMC and EM algorithms for Simultaneous Transformation and Rounding (STAR) Models

a_jInverse rounding function
a_j_roundInverse rounding function: usual rounding + bounds
bart_star_MCMCMCMC Algorithm for BART-STAR
bart_star_MCMC_isplineMCMC sampler for BART-STAR with a monotone spline model for...
BrentMethodBrent's method for optimization
computeTimeRemainingEstimate the remaining time in the MCMC based on previous...
credBandsCompute Simultaneous Credible Bands
ergMeanCompute the ergodic (running) mean.
expectation2_gRcppCompute E(Y^2) for a STAR process
expectation_gRcppEstimate the mean for a STAR process
expectation_identityEstimate the mean for a STAR process
expectation_logEstimate the mean for a STAR process
expectation_sqrtEstimate the mean for a STAR process
Gauss_MCMCMCMC Algorithm for conditional Gaussian likelihood
Gauss_sparse_meansStochastic search for the sparse normal means model
g_bcBox-Cox transformation
gbm_starEM Algorithm for STAR Gradient Boosting Machines
g_bnpBayesian bootstrap-based transformation
g_bnp_sparse_meansBayesian bootstrap-based transformation for sparse means
g_cdfCumulative distribution function (CDF)-based transformation
getEffSizeSummarize of effective sample size
g_inv_approxApproximate inverse transformation
g_inv_bcInverse Box-Cox transformation
g_wcdfWeighted cumulative distribution function (CDF)-based...
init_params_additiveInitialize the parameters for an additive model
init_params_additive0Initialize the parameters for an additive model
init_params_lmInitialize the parameters for a linear regression
init_params_lm_gpriorInitialize the parameters for a linear regression
init_params_lm_hsInitialize the parameters for a linear regression
init_params_meanInitialize the parameters for a simple mean-only model
interval_gRcppEstimate confidence intervals/bands for a STAR process
invlogitCompute the inverse log-odds
logitCompute the log-odds
logLikePointRcppCompute the pointwise log-likelihood for STAR
logLikeRcppCompute the log-likelihood for STAR
plot_coefPlot the estimated regression coefficients and credible...
plot_fittedPlot the fitted values and the data
plot_pmfPlot the empirical and model-based probability mass functions
pmaxRcpppmax() in Rcpp
pminRcpppmin() in Rcpp
randomForest_starEM Algorithm for Random Forest STAR
round_floorRounding function
rtruncnormRcppSample from a truncated normal distribution
sampleFastGaussianSample a Gaussian vector using the fast sampler of...
sample_params_additiveSample the parameters for an additive model
sample_params_additive0Sample the parameters for an additive model
sample_params_lmSample the parameters for a linear regression
sample_params_lm_gpriorSample the parameters for a linear regression
sample_params_lm_hsSample the parameters for a linear regression
sample_params_meanSample the parameters for a simple mean-only model
simBaSCompute Simultaneous Band Scores (SimBaS)
simulate_nb_friedmanSimulate count data a Friedman's nonlinear regression
simulate_nb_lmSimulate count data from a linear regression
splineBasisInitialize and reparametrize a spline basis matrix
star_CICompute asymptotic confidence intervals for STAR linear...
star_EMEM Algorithm for STAR
star_EM_wlsEM Algorithm for the STAR linear model with weighted least...
STAR_gpriorMonte Carlo sampler for STAR linear regression with a g-prior
STAR_gprior_gibbsGibbs sampler for STAR linear regression with a g-prior
STAR_gprior_gibbs_daGibbs sampler (data augmentation) for STAR linear regression...
star_MCMCMCMC Algorithm for STAR
star_MCMC_isplineMCMC sampler for STAR with a monotone spline model for the...
star_pred_distCompute a predictive distribution for the integer-valued...
STAR_sparse_meansStochastic search for the STAR sparse means model
STAR_splineMonte Carlo predictive sampler for spline regression
STAR_spline_gibbsGibbs sampler (data augmentation) for spline regression
truncnorm_momCompute the first and second moment of a truncated normal
uni.sliceUnivariate Slice Sampler from Neal (2008)
drkowal/rSTAR documentation built on July 5, 2023, 2:18 p.m.