library(edgynode) options(width = 750) knitr::opts_chunk$set( comment = "#>", error = FALSE, tidy = FALSE)
edgynode
?With the maturation of (single-cell) sequencing technologies across modalities, the inference of gene regulatory networks (GRN
) is increasingly feasible. Yet, we lack a simple and powerful statistical package to benchmark GRN inference outcomes.
The edgynode
package imports inferred gene regulatory networks and performs network statistics and network simulation procedures to investigate the topology and structure of the GRN at hand.
# install edgynode from GitHub devtools::install_github("drostlab/edgynode")
# library(edgynode) # Benchmark GENIE3 inferred networks with raw, no_noise, and quantile_norm combinations genie3_49_raw <- as.matrix(read.csv( system.file("data/network_raw_49_placenta_development.csv", package = "edgynode"), row.names = 1)) genie3_49_noNoiseCM_raw <- as.matrix(read.csv( system.file("data/network_noNoiseCM_raw_49_placenta_development.csv", package = "edgynode"), row.names = 1)) genie3_49_qnorm_no_noise_removed <- as.matrix(read.csv( system.file("data/network_qnorm_49_placenta_development.csv", package = "edgynode"), row.names = 1)) genie3_49_noNoiseCM_qnorm <- as.matrix(read.csv( system.file("data/network_noNoiseCM_qnorm_49_placenta_development.csv", package = "edgynode"), row.names = 1))
is_adjacency(genie3_49_noNoiseCM_qnorm)
is_adjacency(make_adjacency(genie3_49_noNoiseCM_qnorm))
# Run Benchmark using Hamming distance benchmark_hamming <- network_benchmark_noise_filtering( genie3_49_raw, genie3_49_noNoiseCM_raw, genie3_49_qnorm_no_noise_removed, genie3_49_noNoiseCM_qnorm, dist_type = "hamming", grn_tool = "GENIE3") # visualise results plot_network_benchmark_noise_filtering( benchmark_hamming, dist_type = "hamming", title = "Network Inference Tool: GENIE3")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.