Description Usage Arguments Value Examples
extract all performance metrics for a binomial classification model
1 | classification_metrics(mod, y, y.hat, pi_0 = 0.5)
|
mod |
a general linear model of family binomial |
y |
actual classification values ( only used if mod not specified ) |
y.hat |
model predicitions as percentage ( only used if mod not specified ) |
pi_0 |
the threshold of determination used in classifaction ( optional, default = 0.5 ) |
A list of classification performance metrics derived from the confusion matrix
y.hat : the model classification predictions
confmatrix : the confusion matrix
tpos : count of true positives
tneg : count of true negatives
fneg : count of false negatives
fpos : count of false positives
acc : accuracy score
recall : recall score
precision : precision score
tpr : true positive rate (same as recall)
fpr : false positive rate
fdcr : false discovery rate
fnr : false negative rate
fomr : false omission rate
tnr : true negative rate
ppv : positive predicted value (same as precision)
npv : negative predicted value
F1 : F1 scoring metric
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.