View source: R/26-hierarchicell.R
hierarchicell_simulation | R Documentation |
This function is used to simulate datasets from learned parameters by simulate_hierarchicell
function in hierarchicell package.
hierarchicell_simulation(
parameters,
other_prior = NULL,
return_format,
verbose = FALSE,
seed
)
parameters |
A object generated by |
other_prior |
A list with names of certain parameters. Some methods need
extra parameters to execute the estimation step, so you must input them. In
simulation step, the number of cells, genes, groups, batches, the percent of
DEGs are usually customed, so before simulating a dataset you must point it out.
See |
return_format |
A character. Alternative choices: list, SingleCellExperiment,
Seurat, h5ad. If you select |
verbose |
Logical. Whether to return messages or not. |
seed |
A random seed. |
In hierarchicell, users can set nCells
, nGenes
and fc.group
directly.
There are some notes that users should know:
hierarchicell can only simulate two groups.
Some cells in the result may contain NA values across all genes due to the failing of GLM fitting.
hierarchicell does not return the information of DEGs and we can not know which genes are DEGs.
For more information, see Examples
and hierarchicell::simulate_hierarchicell
Zimmerman K D, Langefeld C D. Hierarchicell: an R-package for estimating power for tests of differential expression with single-cell data. BMC genomics, 2021, 22(1): 1-8. https://doi.org/10.1186/s12864-021-07635-w
Github URL: https://github.com/kdzimm/hierarchicell
## Not run:
ref_data <- SingleCellExperiment::counts(scater::mockSCE())
## estimation
estimate_result <- simmethods::hierarchicell_estimation(
ref_data = ref_data,
other_prior = NULL,
verbose = TRUE,
seed = 111
)
# 1) Simulate with default parameters
simulate_result <- simmethods::hierarchicell_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = NULL,
return_format = "list",
verbose = TRUE,
seed = 111
)
## counts
counts <- simulate_result[["simulate_result"]][["count_data"]]
dim(counts)
# 2) Customed parameters: cell and gene number, fold change of DEGs. (But hierarchicell
# does not tell us which genes are DEGs). Note that some cells may contain NA values
# across all genes due to the failing of GLM fitting.
simulate_result <- simmethods::hierarchicell_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = list(nCells = 2000,
nGenes = 4000,
fc.group = 4),
return_format = "list",
verbose = TRUE,
seed = 111
)
## counts
counts <- simulate_result[["simulate_result"]][["count_data"]]
dim(counts)
## Remove NA cells
if(!requireNamespace("tidyr", quietly = TRUE)){utils::install.packages("tidyr")}
filter_counts <- as.matrix(t(tidyr::drop_na(as.data.frame(t(counts)))))
dim(filter_counts)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.