muscat_simulation | R Documentation |
This function is used to simulate datasets from learned parameters by simData
function in muscat package.
muscat_simulation(
parameters,
other_prior = NULL,
return_format,
verbose = FALSE,
seed
)
parameters |
A object generated by |
other_prior |
A list with names of certain parameters. Some methods need
extra parameters to execute the estimation step, so you must input them. In
simulation step, the number of cells, genes, groups, batches, the percent of
DEGs are usually customed, so before simulating a dataset you must point it out.
See |
return_format |
A character. Alternative choices: list, SingleCellExperiment,
Seurat, h5ad. If you select |
verbose |
Logical. Whether to return messages or not. |
seed |
A random seed. |
In addtion to simulate datasets with default parameters, users want to simulate other kinds of datasets, e.g. a counts matrix with 2 or more cell groups. In muscat, you can set extra parameters to simulate datasets.
The customed parameters you can set are below:
nCells. In muscat, you can set nCells directly. For example, if you want to simulate 1000 cells, you can type other_prior = list(nCells = 1000)
.
nGenes. You can directly set other_prior = list(nGenes = 5000)
to simulate 5000 genes.
nGroups. In muscat, nGroups
can be 1 or 2 because muscat can only simulate two cell groups.
de.prob. You can directly set other_prior = list(de.prob = 0.2)
to simulate DEGs that account for 20 percent of all genes.
fc.group. You can directly set other_prior = list(fc.group = 2)
to specify the minimum fold change of DEGs.
For more customed parameters in muscat, please check muscat::simData()
.
Crowell H L, Soneson C, Germain P L, et al. Muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data. Nature communications, 2020, 11(1): 1-12. https://doi.org/10.1038/s41467-020-19894-4
Github URL: https://github.com/HelenaLC/muscat
## Not run:
ref_data <- simmethods::data
## cell groups
group_condition <- as.numeric(simmethods::group_condition)
## estimation
estimate_result <- simmethods::muscat_estimation(
ref_data = ref_data,
other_prior = list(group.condition = group_condition),
verbose = TRUE,
seed = 111
)
# 1) Simulate with default parameters
simulate_result <- simmethods::muscat_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = NULL,
return_format = "list",
verbose = TRUE,
seed = 111
)
## counts
counts <- simulate_result[["simulate_result"]][["count_data"]]
dim(counts)
# 2) Simulate 1000 cells and 2000 genes
simulate_result <- simmethods::muscat_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = list(nCells = 1000,
nGenes = 2000),
return_format = "list",
verbose = TRUE,
seed = 111
)
## counts
counts <- simulate_result[["simulate_result"]][["count_data"]]
dim(counts)
# 3) Simulate 2 groups (20% proportion of DEGs, 4 fold change)
simulate_result <- simmethods::muscat_simulation(
parameters = estimate_result[["estimate_result"]],
other_prior = list(nCells = 1000,
nGenes = 2000,
nGroups = 2,
de.prob = 0.2,
fc.group = 4),
return_format = "list",
verbose = TRUE,
seed = 111
)
## cell information
col_data <- simulate_result[["simulate_result"]][["col_meta"]]
table(col_data$group)/1000
## gene information
row_data <- simulate_result[["simulate_result"]][["row_meta"]]
table(row_data$de_gene)[2]/2000
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.