#' @title A light weight implementation of a logistic regression model.
#'
#' @description
#'
#' A binary logistic model.
#'
#' @export
#'
#' @examples
#' .data <- cars
#' .data$fast_car <- ifelse(.data$speed > 20, 1, 0)
#' glm_model <- glm(fast_car ~ dist, data = .data)
#' Mod <- ModelBinaryChoice$new(glm_model$coefficients, formula = glm_model$formula)
#' Mod
#' head(Mod$predict(.data))
ModelBinaryChoice <- R6::R6Class(
classname = "ModelBinaryChoice",
inherit = ModelBase,
public = list(
#' @description
#'
#' Initialisation function
#'
#' @param params a `data.frame` object.
#' @param formula a `formula` object.
#' @param preprocessing_fn a pre-processing function that gets applied to the
#' data given to the `predict` method before making the prediction.
#'
#' @return NULL
initialize = function(params, formula, preprocessing_fn = NULL) {
super$initialize(params = params,
formula = formula,
type = "binary_choice",
preprocessing_fn = preprocessing_fn)
invisible(NULL)
},
#' @description
#'
#' This predict method returns probabilities generated from the parameters
#' of this [Model] object.
#'
#' @param newdata a `data.frame` object.
#' @param link_function :: `character(1)`\cr
#' default as 'logit' using `stats::binomial(link = "logit")`. Choice of
#' 'logit' and 'probit'. TODO: implement 'probit' option.
#'
#' @return a numeric vector.
#' @export
predict = function(newdata, link_function = c("logit")) {
link_function <- match.arg(link_function)
linear_comb <- private$.compute_linear_combination(newdata)
1 / (1 + exp(-linear_comb))
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.