analysis/01_09_fig-all-sequences.R

# 05_01 Visualizations: Getting the overall pattern statewide
library(tidyverse)
library(here)

pl_seq <- read_rds(here::here("analysis/data/derived_data/pl_seq.rds")) %>%
  as_tibble(rownames = "personid") %>%
  mutate(personid = as.numeric(personid))

hh_pr_ids <- PSRCData::prdat %>%
  select(hhid, personid)

hhids <- hh_pr_ids %>%
  pull(hhid) %>%
  unique()



timetable <- tibble(times = colnames(pl_seq %>% select(-personid)), mins = c(seq(from=1, to=1440, by=1)))


seq_long <- pl_seq %>%
  # left_join(cluster.id, by = "pid") %>%
  gather(key = "times", value = "state",  -personid) %>%
  left_join(timetable, by = ("times"))



## 4. Make x axis labels (times)
timelabs <- c(seq(3,21,3) %>% str_pad(width = 2,side = "left", pad = "0") %>% paste0(":00"), "00:00", "02:59")


# MAKE FIGURE w/ `ggplot2`

seq_long %>%
  #filter(cluster == "School Day") %>%
  ggplot(aes(x = mins, fill =state)) +
  geom_area(stat="bin", binwidth = 1, position = "fill") +
  scale_x_continuous('Time of Day',
                     breaks=seq(1,1620, by = 180),
                     minor_breaks = seq(1,1441, by = 60),
                     labels = timelabs) +
  scale_y_continuous(name = "Frequency")+
  scale_fill_brewer(
    palette = "Accent", name = "State"
                    # labels = c("Home", "Other", "School", "Travel", "Work")
                    ) +
  theme_bw() +

  theme(
    text = element_text(size=8),
    axis.text = element_text(size=7),
    legend.text = element_text(size=7),
    #strip.background = ,
    strip.text = element_text(size=8),
    panel.spacing.x = unit(0.28, "cm"),
    panel.border = element_rect(size = 0.4),
    axis.ticks = element_line(size = 0.4)
  )

ggsave(here("analysis/figures/all-sequences.png"), units = "in", width = 6.4, height = 5.2)
e-mcbride/PSRC.analysis documentation built on April 14, 2022, 5:29 p.m.